Coordinate Geometry - Circle

Show that $\left(1, 1\right)$, $\left(-6, 0\right)$, $\left(-2, 2\right)$, $\left(-2, -8\right)$ are concyclic.


Let the given points be $A \left(1, 1\right)$, $B\left(-6, 0\right)$, $C \left(-2,2\right)$, $\left(-2, -8\right)$

By drawing a rough sketch it can be seen that for the quadrilateral $ABCD$,

$AB$ and $CD$ are the diagonals;

$AC, \; BD$ and $BC, \; DA$ are the opposite sides.

Now,

$AB = \sqrt{\left(1 + 6\right)^2 + 1^2} = \sqrt{50} = 5 \sqrt{2}$

$CD = \sqrt{\left(-2 + 2\right)^2 + \left(2 + 8\right)^2} = 10$

$\therefore \;$ Product of measure of diagonals $= AB \times CD = 5 \sqrt{2} \times 10 = 50 \sqrt{2}$ $\;\;\; \cdots \; (1)$

$AC = \sqrt{\left(1 + 2\right)^2 + \left(1 - 2\right)^2} = \sqrt{10}$

$BD = \sqrt{\left(-6 + 2\right)^2 + \left(0 + 8\right)^2} = \sqrt{80} = 4 \sqrt{5}$

$BC = \sqrt{\left(-6 + 2\right)^2 + \left(0 - 2\right)^2} = \sqrt{20} = 2 \sqrt{5}$

$DA = \sqrt{\left(1 + 2\right)^2 + \left(1 + 8\right)^2} = \sqrt{90} = 3 \sqrt{10}$

$\therefore \;$ Sum of the products of the measures of the pairs of opposite sides

$\begin{aligned} = AC \times BD + BC \times DA & = \sqrt{10} \times 4 \sqrt{5} + 2 \sqrt{5} \times 3 \sqrt{10} \\\\ & = 20 \sqrt{2} + 30 \sqrt{2} \\\\ & = 50 \sqrt{2} \;\;\; \cdots \; (2) \end{aligned}$

$\therefore \;$ We have from equations $(1)$ and $(2)$,

$AB \times CD = AC \times BD + BC \times DA$

i.e. $\;$ product of measures of diagonals $=$ sum of the products of the measures of the pairs of opposite sides

$\therefore \;$ By Ptolemy's theorem, a quadrilateral can be inscribed in a circle with the given points.

$\implies$ The given points are concyclic.