Find the points whose polar coordinates are:
- $\left(2, 45^\circ\right)$
- $\left(5, \dfrac{-\pi}{2}\right)$
- The polar coordinates are $\;$ $\left(r, \theta\right) = \left(2, 45^\circ\right)$
Let the corresponding Cartesian coordinates be $\left(x, y\right)$
Now, $\;$ $x = r \cos \theta = 2 \cos 45^\circ = \dfrac{2}{\sqrt{2}} = \sqrt{2}$
and $\;$ $y = r \sin \theta = 2 \sin 45^\circ = \dfrac{2}{\sqrt{2}} = \sqrt{2}$
$\therefore \;$ The corresponding Cartesian coordinates are $\;$ $\left(x, y\right) = \left(\sqrt{2}, \sqrt{2}\right)$ - The polar coordinates are $\;$ $\left(r, \theta\right) = \left(5, \dfrac{-\pi}{2}\right)$
Let the corresponding Cartesian coordinates be $\left(x, y\right)$
Now, $\;$ $x = r \cos \theta = 5 \cos \left(\dfrac{-\pi}{2}\right) = 0$
and $\;$ $y = r \sin \theta = 2 \sin \left(\dfrac{-\pi}{2}\right) = -2$
$\therefore \;$ The corresponding Cartesian coordinates are $\;$ $\left(x, y\right) = \left(0, -2\right)$