Find the value of k in order that the equation 12x2+kxy+2y2+11x−5y+2=0 may represent a pair of straight lines.
Given equation is: 12x2+kxy+2y2+11x−5y+2=0 ⋯(1)
Comparing equation (1) with the general second degree equation
ax2+2hxy+by2+2gx+2fy+c=0 ⋯(2) gives
a=12,h=k2,b=2,g=112,f=−52,c=2
Equation (2) represents a pair of straight lines if
abc+2fgh−af2−bg2−ch2=0 ⋯(3)
Substituting the values of a,b,c,f,g,h in equation (3) gives
12×2×2+2×(−52)×112×k2−12×(−52)2−2×(112)2−2×(k2)2=0
i.e. 48−55k4−75−1212−k22=0
i.e. −1752−55k4−k22=0
i.e. 2k2+55k+350=0
⟹ k=−10 or k=−17.5