Coordinate Geometry - Straight Line

Prove that the equation $\;$ $x^2 - 5xy + 4y^2 + x + 2y - 2 = 0$ $\;$ represents two straight lines.


Given equation is: $\;$ $x^2 - 5xy + 4y^2 + x + 2y - 2 = 0$ $\;\;\; \cdots \; (1)$

Comparing equation $(1)$ with the general second degree equation

$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ $\;\;\; \cdots \; (2)$ $\;$ gives

$a = 1, \; h = \dfrac{-5}{2}, \; b = 4, \; g = \dfrac{1}{2}, \; f = 1, \; c = -2$

Equation $(2)$ represents a pair of straight lines if

$abc + 2fgh - af^2 - bg^2 - ch^2 = 0$ $\;$ i.e. $\;$ $\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0$

Substituting the values of $\;$ $a, \; b, \; c, \; f, \; g, \; h \;$ in the expression $\;$ $abc + 2fgh - af^2 - bg^2 - ch^2$ $\;$ we have,

$1 \times 4 \times \left(-2\right) + 2 \times 1 \times \dfrac{1}{2} \times \left(\dfrac{-5}{2}\right) - 1 \times 1^2 - 4 \times \left(\dfrac{1}{2}\right)^2 - \left(-2\right) \times \left(\dfrac{-5}{2}\right)^2$

$= -8 - \dfrac{5}{2} -1 -1 + \dfrac{25}{2}$

$= -10 + 10 = 0$

i.e. $\;$ $abc + 2fgh - af^2 - bg^2 - ch^2 = 0$

$\implies$ Equation $(1)$ represents a pair of straight lines.