Similarity

In the figure, $AB$ and $DE$ are perpendicular to $BC$.

  1. Prove that $\triangle ABC \sim \triangle DEC$.
  2. If $AB = 6 \; cm$, $DE = 4 \; cm$, $AC = 15 \; cm$, calculate $CD$.
  3. Find the ratio of $\;\;$ $\dfrac{\text{Area}\left(\triangle ABC\right)}{\text{Area}\left(\triangle DEC\right)}$


  1. Given: $\;\;$ $AB \perp BC$, $\;$ $DE \perp BC$

    $\therefore \;$ $\angle ABC = \angle DEC = 90^\circ$ $\;\;\; \cdots \; (1)$

    In triangles $ABC$ and $DEC$,

    $\angle ACB = \angle DCE$ $\;$ [common angle] $\;\;\; \cdots \; (2)$

    $\therefore \;$ From equations $(1)$ and $(2)$, $\;$ $\triangle ABC \sim \triangle DEC$ $\;$ [by Angle-Angle postulate]


  2. $\because \;$ $\triangle ABC \sim \triangle DEC$

    $\therefore \;$ $\dfrac{AB}{DE} = \dfrac{AC}{DC}$ $\;\;\;$ [corresponding sides of similar triangles are in proportion]

    $\therefore \;$ $DC = \dfrac{AC \times DE}{AB} = \dfrac{15 \times 4}{6} = 10 \; cm$


  3. $\dfrac{\text{Area} \left(\triangle ABC\right)}{\text{Area}\left(\triangle DEC\right)} = \dfrac{AB^2}{DE^2}$

    [areas of two similar triangles are proportional to the squares on their corresponding sides]

    i.e. $\;$ $\dfrac{\text{Area} \left(\triangle ABC\right)}{\text{Area}\left(\triangle DEC\right)} = \dfrac{6^2}{4^2} = \dfrac{9}{4}$