Ratio and Proportion

If $x$, $y$ and $z$ are in continued proportion, prove that $\;$ $\dfrac{\left(x + y\right)^2}{\left(y + z\right)^2} = \dfrac{x}{z}$


$x, \; y, \; z$ are in continued proportion.

$\implies$ $\dfrac{x}{y} = \dfrac{y}{z} = k \;$ (say)

$\implies$ $y = z k$ $\;\;\; \cdots \; (1)$

and $\;$ $x = yk = zk^2$ $\;\;\; \cdots \; (2)$

$\begin{aligned} LHS & = \dfrac{\left(x + y\right)^2}{\left(y + z\right)^2} \\\\ & = \dfrac{\left(zk^2 + zk\right)^2}{\left(zk + z\right)^2} \;\;\; \left[\text{in view of equations (1) and (2)}\right] \\\\ & = \dfrac{\left[zk \left(k + 1\right)\right]^2}{\left[z \left(k + 1\right)\right]^2} \\\\ & = k^2 \;\;\; \cdots \; (3) \\\\ RHS & = \dfrac{x}{z} \\\\ & = \dfrac{zk^2}{z} = k^2 \;\;\; \cdots \; (4) \end{aligned}$

$\therefore \;$ From equations $(3)$ and $(4)$, $\;\;$ $LHS = RHS$

i.e. $\;$ $\dfrac{\left(x + y\right)^2}{\left(y + z\right)^2} = \dfrac{x}{z}$

Hence proved.