Statistics

Find the mean and the median for the following frequency distribution:

$x$ $8$ $9$ $10$ $11$ $12$
$f$ $5$ $4$ $2$ $6$ $3$


$x_i$ $f_i$ $f_i x_i$ Cumulative frequency
$8$ $5$ $40$ $5$
$9$ $4$ $36$ $9$
$10$ $2$ $20$ $11$
$11$ $6$ $66$ $17$
$12$ $3$ $36$ $20$


$\Sigma f_i = N = 20$ (Even), $\;$ $\Sigma f_i x_i = 198$

Mean $= \dfrac{\Sigma f_i x_i}{\Sigma f_i} = \dfrac{198}{20} = 9.9$

$\because$ $N$ is even, median $= \dfrac{\left(\dfrac{N}{2}\right)^{th} \text{term} + \left(\dfrac{N}{2} + 1\right)^{th} \text{term}}{2}$

i.e. $\;$ Median $= \dfrac{\left(\dfrac{20}{2}\right)^{th} \text{term} + \left(\dfrac{20}{2} + 1\right)^{th} \text{term}}{2}$

i.e. $\;$ Median $= \dfrac{10^{th} \; \text{term} + 11^{th} \; \text{term}}{2}$

i.e. $\;$ Median $= \dfrac{10 + 10}{2} = \dfrac{20}{2} = 10$