Matrices

If $M \times \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \end{bmatrix}$, find the order of matrix $M$ and the matrix $M$.


$M$ is a $1 \times 2$ matrix.

Let $M = \begin{bmatrix} a & b \end{bmatrix}$

Then, $\;$ $M \times \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \end{bmatrix}$ $\implies$ $\begin{bmatrix} a & b \end{bmatrix} \times \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \end{bmatrix}$

i.e. $\;$ $\begin{bmatrix} a \times 1 + b \times 0 & a \times 1 + b \times 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \end{bmatrix}$

i.e. $\;$ $\begin{bmatrix} a & a + 2b \end{bmatrix} = \begin{bmatrix} 1 & 2 \end{bmatrix}$

When two matrices are equal, their corresponding elements are equal. Therefore, we have

$a = 1$

and $\;$ $a + 2b = 2$ $\implies$ $1 + 2b = 2$ $\implies$ $b = \dfrac{1}{2}$

$\therefore \;$ $M = \begin{bmatrix} 1 & \dfrac{1}{2} \end{bmatrix}$