Matrices

Given $A = \begin{bmatrix} 4 & -12 \\ 4 & 0 \end{bmatrix}$, $B = \begin{bmatrix} -3 & 2 \\ 4 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix}$, find matrix $X$ such that $A + 2X = 2B + C$


$A + 2X = 2B + C$

i.e. $\;$ $2X = 2B + C - A$

i.e. $\;$ $X = B + \dfrac{1}{2} \left(C - A\right)$

$\begin{aligned} i.e. \;\; X & = \begin{bmatrix} -3 & 2 \\ 4 & 1 \end{bmatrix} + \dfrac{1}{2} \left\{\begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 4 & -12 \\ 4 & 0 \end{bmatrix} \right\} \\\\ & = \begin{bmatrix} -3 & 2 \\ 4 & 1 \end{bmatrix} + \dfrac{1}{2} \begin{bmatrix} 4 - 4 & 0 + 12 \\ 0 - 4 & 0 - 0 \end{bmatrix} \\\\ & = \begin{bmatrix} -3 & 2 \\ 4 & 1 \end{bmatrix} + \dfrac{1}{2} \begin{bmatrix} 0 & 12 \\ -4 & 0 \end{bmatrix} \\\\ & = \begin{bmatrix} -3 & 2 \\ 4 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 6 \\ -2 & 0 \end{bmatrix} \\\\ & = \begin{bmatrix} -3 + 0 & 2 + 6 \\ 4 - 2 & 1 + 0 \end{bmatrix} \\\\ & = \begin{bmatrix} -3 & 8 \\ 2 & 1 \end{bmatrix} \end{aligned}$