In the figure, $AC$ is the diameter of a circle with center $O$.
$CD$ and $BE$ are parallel.$\angle AOB = 80^\circ$ and $\angle ACE = 10^\circ$. Find:
- $\angle BEC$;
- $\angle BCD$;
- $\angle CED$.
Given:
$AC =$ diameter of circle
$O =$ center of circle
$CD \parallel BE$
$\angle AOB = 80^\circ$; $\;$ $\angle ACE = 10^\circ$
- $\angle AOB + \angle BOC = 180^\circ$ $\;\;\;$ [linear pair]
$\therefore \;$ $\angle BOC = 180^\circ - \angle AOB = 180^\circ - 80^\circ = 100^\circ$
Now, $\;$ $\angle BEC = \dfrac{1}{2} \angle BOC$ $\;\;\;$ [angle at center is twice the angle at the remaining circumference]
i.e. $\;$ $\angle BEC = \dfrac{1}{2} \times 100^\circ = 50^\circ$ - $CD \parallel BE$ and $EC$ is a transversal.
$\therefore \;$ $\angle ECD = 50^\circ$
Now, $\;$ $OB = OC$ $\;\;\;$ [radii of the circle]
$\therefore \;$ $\angle OBC = \angle OCB$ $\;\;\;$ [angles opposite equal sides are equal]
Now, $\;$ in $\triangle BOC$,
$\angle OBC + \angle OCB + \angle BOC = 180^\circ$ $\;\;\;$ [sum of angles of a triangle]
i.e. $\;$ $2 \angle OCB + \angle BOC = 180^\circ$
i.e. $\;$ $2 \angle OCB = 180^\circ - \angle BOC = 180^\circ - 100^\circ = 80^\circ$
$\implies$ $\angle OCB = 40^\circ$
Now, $\;$ $\angle BCD = \angle ECD + \angle ACE + \angle OCB$
i.e. $\angle BCD = 50^\circ + 10^\circ + 40^\circ = 100^\circ$ - $BCDE$ is a cyclic quadrilateral.
Then, $\;$ $\angle BED + \angle BCD = 180^\circ$ $\;\;\;$ [opposite angles of a cyclic quadrilateral are supplementary]
$\therefore \;$ $\angle BED = 180^\circ - \angle BCD = 180^\circ - 100^\circ = 80^\circ$
Now, $\;$ $\angle BED = \angle BEC + \angle CED$
$\therefore \;$ $\angle CED = \angle BED - \angle BEC = 80^\circ - 50^\circ = 30^\circ$