Arithmetic Progression

Find: $\;$ $21 + 18 + 15 + \cdots - 81$


For the given arithmetic progression (A.P) $\;$ $21 + 18 + 15 + \cdots - 81$

first term $= a = 21$

common difference $= d = -3$

Let the number of terms in the given A.P $= n$

$n^{th}$ term $= t_n = -81$

$t_n = a + \left(n - 1\right)d$

i.e. $\;$ $-81 = 21 + \left(n - 1\right) \times \left(-3\right)$

i.e. $\;$ $n - 1 = \dfrac{21 + 81}{3} = 34$

$\implies$ $n = 35$

For the given A.P, sum to $n$ terms is

$\begin{aligned} S_n & = 21 + 18 + 15 + \cdots - 81 \\\\ & = \dfrac{n}{2} \left[2a + \left(n - 1\right)d\right] \\\\ & = \dfrac{35}{2} \left[2 \times 21 + \left(35 - 1\right) \times \left(-3\right)\right] \\\\ & = \dfrac{35}{2} \left[42 - 102\right] \\\\ & = \dfrac{35}{2} \times \left(-60\right) = -1050 \end{aligned}$