Vector Algebra

Show that the four points $A, \; B, \; C, \; D$ whose position vectors are $6 \hat{i} - 7 \hat{j}$, $\;$ $16 \hat{i} - 19 \hat{j} - 4 \hat{k}$, $\;$ $3 \hat{j} - 6 \hat{k}$ and $2 \hat{i} - 5 \hat{j} + 10 \hat{k}$ respectively are coplanar.


Given: $\;$ Position vector (p.v) of point $A = 6 \hat{i} - 7 \hat{j}$

p.v of point $B = 16 \hat{i} - 19 \hat{j} - 4 \hat{k}$

p.v of point $C = 3 \hat{j} - 6 \hat{k}$

p.v of point $D = 2 \hat{i} - 5 \hat{j} + 10 \hat{k}$

Now,

$\begin{aligned} \overrightarrow{AB} & = \text{p.v of point B} - \text{p.v of point A} \\\\ & = \left(16 \hat{i} - 19 \hat{j} - 4 \hat{k}\right) - \left(6 \hat{i} - 7 \hat{j}\right) \\\\ & = 10 \hat{i} - 12 \hat{j} - 4 \hat{k} \end{aligned}$

$\begin{aligned} \overrightarrow{AC} & = \text{p.v of point C} - \text{p.v of point A} \\\\ & = \left(3 \hat{j} - 6 \hat{k}\right) - \left(6 \hat{i} - 7 \hat{j}\right) \\\\ & = -6 \hat{i} + 10 \hat{j} - 6 \hat{k} \end{aligned}$

$\begin{aligned} \overrightarrow{AD} & = \text{p.v of point D} - \text{p.v of point A} \\\\ & = \left(2 \hat{i} - 5 \hat{j} + 10 \hat{k}\right) - \left(6 \hat{i} - 7 \hat{j}\right) \\\\ & = -4 \hat{i} + 2 \hat{j} + 10 \hat{k} \end{aligned}$

Scalar triple product of the vectors $\overrightarrow{AB}$, $\overrightarrow{AC}$ and $\overrightarrow{AD}$ is

$\begin{aligned} \left[\overrightarrow{AB} \;\; \overrightarrow{AC} \;\; \overrightarrow{AD}\right] & = \begin{vmatrix} 10 & - 12 & -4 \\ - 6 & 10 & -6 \\ -4 & 2 & 10 \end{vmatrix} \\\\ & = 10 \left(100 + 12\right) + 12 \left(- 60 - 24\right) - 4 \left(- 12 + 40\right) \\\\ & = 1120 - 1008 - 112 \\\\ & = 0 \end{aligned}$

$\because \;$ $\left[\overrightarrow{AB} \;\; \overrightarrow{AC} \;\; \overrightarrow{AD}\right] = 0$ $\implies$ Vectors $\overrightarrow{AB}$, $\overrightarrow{AC}$ and $\overrightarrow{AD}$ are coplanar.

$\implies$ Points $A, \; B, \; C$ and $D$ are coplanar.