If the mean marks of 100 students is 54, find the values of p and q:
Marks | 0−20 | 20−40 | 40−60 | 60−80 | 80−100 |
---|---|---|---|---|---|
Number of students | 16 | p | 24 | 26 | q |
Marks (Class Interval) | Mid Value (xi) | Number of students (Frequency fi) | fixi |
---|---|---|---|
0−20 | 10 | 16 | 160 |
20−40 | 30 | p | 30p |
40−60 | 50 | 24 | 1200 |
60−80 | 70 | 26 | 1820 |
80−100 | 90 | q | 90q |
Total number of students =Σfi=66+p+q=100 [given]
⟹ p+q=34 ⟹ p=34−q ⋯(1)
Σfixi=3180+30p+90q=3180+30(p+3q)=3180+30(34−q+3q)[by equation (1)]=3180+30(34+2q)=3180+60(17+q)
Mean=ΣfixiΣfi=3180+60(17+q)100=54 [given]
i.e. 3180+60(17+q)=5400
i.e. 60(17+q)=2220
i.e. 17+q=37 ⟹ q=20
Substituting the value of q in equation (1) gives
p=34−20=14
∴ p = 14, \; q = 20