Statistics

If the mean marks of $100$ students is $54$, find the values of $p$ and $q$:

Marks $0 - 20$ $20 - 40$ $40 - 60$ $60 - 80$ $80 - 100$
Number of students $16$ $p$ $24$ $26$ $q$


Marks (Class Interval) Mid Value $\left(x_i\right)$ Number of students $\left(\text{Frequency } f_i\right)$ $f_i x_i$
$0 - 20$ $10$ $16$ $160$
$20 - 40$ $30$ $p$ $30 p$
$40 - 60$ $50$ $24$ $1200$
$60 - 80$ $70$ $26$ $1820$
$80 - 100$ $90$ $q$ $90 q$


Total number of students $= \Sigma f_i = 66 + p + q = 100$ $\;\;\;$ [given]

$\implies$ $p + q = 34$ $\implies$ $p = 34 - q$ $\;\;\; \cdots \; (1)$

$\begin{aligned} \Sigma f_i x_i & = 3180 + 30p + 90q \\\\ & = 3180 + 30 \left(p + 3q\right) \\\\ & = 3180 + 30 \left(34 - q + 3q\right) \;\;\; \left[\text{by equation (1)}\right] \\\\ & = 3180 + 30 \left(34 + 2q\right) \\\\ & = 3180 + 60 \left(17 + q\right) \end{aligned}$

$\text{Mean} = \dfrac{\Sigma f_i x_i}{\Sigma f_i} = \dfrac{3180 + 60 \left(17 + q\right)}{100} = 54 \;\;\;$ [given]

i.e. $\;$ $3180 + 60 \left(17 + q\right) = 5400$

i.e. $\;$ $60 \left(17 + q\right) = 2220$

i.e. $\;$ $17 + q = 37$ $\implies$ $q = 20$

Substituting the value of $q$ in equation $(1)$ gives

$p = 34 - 20 = 14$

$\therefore \;$ $p = 14, \; q = 20$