Similarity

In $\triangle PQR$, $S$ is a point on $QR$ such that $\angle Q = \angle SPR$.

  1. Prove that $\triangle PQR \sim \triangle SPR$
  2. If $QS = 5 \; cm$, $SR = 4 \; cm$, find the length of $PR$


In triangles $PQR$ and $SPR$,

$\angle Q = \angle SPR$ $\;\;\;$ [given]

$\angle PRQ = \angle PRS$ $\;\;\;$ [common angle]

$\therefore \;$ $\triangle PQR \sim \triangle SPR$ $\;\;\;$ [by angle-angle (AA) postulate]

$\because \;$ Corresponding sides of similar triangles are in proportion, we have,

$\dfrac{QR}{PR} = \dfrac{PR}{SR}$

$\implies$ $PR^2 = QR \times SR$

i.e. $\;$ $PR^2 = \left(QS + SR\right) = \left(5 + 4\right) \times 4 = 36$

$\implies$ $PR = 6 \; cm$