Mensuration

The internal and external diameters of a hollow hemispherical vessel are $14 \; cm$ and $21 \; cm$ respectively. Find the total surface area of the vessel. Take $\pi = \dfrac{22}{7}$


Given: $\;$ Internal diameter of the vessel $= 14 \; cm$;

External diameter of the vessel $= 21 \; cm$

$\therefore \;$ Internal radius of the hemispherical vessel $= r = 7 \; cm$

External radius of the hemispherical vessel $= R = 10.5 \; cm$

Total surface area of the hemispherical vessel (T.S.A) $= $ External surface area $+$ Internal surface area $+$ Area of the ring

$\begin{aligned} i.e. \; T.S.A & = 2 \pi R^2 + 2 \pi r^2 + \pi \left(R^2 - r^2\right) \\\\ & = 2 \pi \left(R^2 + r^2\right) + \pi \left(R^2 - r^2\right) \\\\ & = 2 \pi \left(10.5^2 + 7^2\right) + \pi \left(10.5^2 - 7^2\right) \\\\ & = 318.5 \pi + 61.25 \pi \\\\ & = 379.75 \pi = 379.75 \times \dfrac{22}{7} = 1193.5 \; cm^2 \end{aligned}$