Matrices

If $A = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -2 & 1 \\ -3 & 2 \end{bmatrix}$ and $A^2 - 5B^2 = 5C$, find $C$.


Given: $\;$ $A^2 - 5B^2 = 5 C$

i.e. $\;$ $C = \dfrac{1}{5} \times A^2 - B^2$ $\;\;\; \cdots \; (1)$

$\begin{aligned} A^2 & = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix} \times \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix} \\\\ & = \begin{bmatrix} 1 \times 1 + 3 \times 3 & 1 \times 3 + 3 \times 4 \\ 3 \times 1 + 4 \times 3 & 3 \times 3 + 4 \times 4 \end{bmatrix} \\\\ & = \begin{bmatrix} 10 & 15 \\ 15 & 25 \end{bmatrix} \end{aligned}$

$\begin{aligned} \therefore \; \dfrac{1}{5} \times A^2 & = \dfrac{1}{5} \times \begin{bmatrix} 10 & 15 \\ 15 & 25 \end{bmatrix} \\\\ & = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \;\;\; \cdots \; (2) \end{aligned}$

$\begin{aligned} B^2 & = \begin{bmatrix} -2 & 1 \\ -3 & 2 \end{bmatrix} \times \begin{bmatrix} -2 & 1 \\ -3 & 2 \end{bmatrix} \\\\ & = \begin{bmatrix} -2 \times \left(-2\right) + 1 \times \left(-3\right) & -2 \times 1 + 1 \times 2 \\ -3 \times \left(-2\right) + 2 \times \left(-3\right) & -3 \times 1 + 2 \times 2 \end{bmatrix} \\\\ & = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \;\;\; \cdots \; (3) \end{aligned}$

In view of equations $(2)$ and $(3)$, equation $(1)$ becomes

$\begin{aligned} C & = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\\\ & = \begin{bmatrix} 2 -1 & 3 - 0 \\ 3 - 0 & 5 - 1 \end{bmatrix} \\\\ & = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix} \end{aligned}$