Inverse Trigonometric Functions

Prove that: $\;$ $2 \left[\tan^{-1} \left(1\right) + \tan^{-1} \left(\dfrac{1}{2}\right) + \tan^{-1} \left(\dfrac{1}{3}\right)\right] = \pi$


To prove that: $\;$ $2 \left[\tan^{-1} \left(1\right) + \tan^{-1} \left(\dfrac{1}{2}\right) + \tan^{-1} \left(\dfrac{1}{3}\right)\right] = \pi$

i.e. $\;$ To prove that: $\;$ $\tan^{-1} \left(1\right) + \tan^{-1} \left(\dfrac{1}{2}\right) + \tan^{-1} \left(\dfrac{1}{3}\right) = \dfrac{\pi}{2}$

$\begin{aligned} LHS & = \tan^{-1} \left(1\right) + \tan^{-1} \left(\dfrac{1}{2}\right) + \tan^{-1} \left(\dfrac{1}{3}\right) \\\\ & = \dfrac{\pi}{4} + \tan^{-1} \left(\dfrac{\dfrac{1}{2} + \dfrac{1}{3}}{1 - \dfrac{1}{2} \times \dfrac{1}{3}}\right) \\\\ & \left[\text{Note: } \tan^{-1} A + \tan^{-1} B = \tan^{-1} \left(\dfrac{A + B}{1 - AB}\right)\right] \\\\ & = \dfrac{\pi}{4} + \tan^{-1} \left(\dfrac{5/6}{5/6}\right) \\\\ & = \dfrac{\pi}{4} + \tan^{-1} \left(1\right) \\\\ & = \dfrac{\pi}{4} + \dfrac{\pi}{4} \\\\ & = \dfrac{\pi}{2} = RHS \end{aligned}$

Hence proved.