Coordinate Geometry

$A \left(7, -5\right)$, $B \left(5,3\right)$ and $C \left(-9, 1\right)$ are the vertices of $\triangle ABC$. Find the slope of $BC$ and the equation of the altitude through $A$.


Given: $\;$ $A \left(7, -5\right)$, $B \left(5,3\right)$, $C \left(-9, 1\right)$

Slope of $BC = m_1 = \dfrac{3 - 1}{5 + 9} = \dfrac{2}{14} = \dfrac{1}{7}$

The altitude through $A$ is perpendicular to $BC$.

$\therefore \;$ Slope of altitude through $A = m = \dfrac{-1}{m_1} = -7$

The altitude passes through $A \left(7, -5\right)$

$\therefore \;$ The required equation of altitude is

$y + 5 = -7 \left(x - 7\right)$

i.e. $\;$ $y + 5 = -7x + 49$

i.e. $\;$ $7x + y = 44$