Boolean Algebra and Switching Circuits

Write the statement for the following switching circuit.


Simplify the statement.

Construct the switching circuit for the simplified form.


The corresponding Boolean expression for the given switching circuit is:

$ABC + ABC' + AB'C + A'BC$

This can be simplified as:

$AB \left(C + C'\right) + AB'C + A'BC$

$= AB + AB'C + A'BC$ $\;\;\;$ $\left[\text{Note: } C + C' = 1\right]$

$= B \left(A + A'C\right) + AB'C$

$= B \left(A + A'\right) \left(A + C\right) + AB'C$ $\;\;\; \left[\text{Distributive law: } a + bc = \left(a + b\right) \left(a + c\right)\right]$

$= B \left(A + C\right) + AB'C$ $\;\;\;$ $\left[\text{Note: } A + A' = 1\right]$

$= AB + BC + AB'C$

$= A \left(B + B'C\right) + BC$

$= A \left(B + B'\right) \left(B + C\right) + BC$ $\;\;\; \left[\text{By Distributive law}\right]$

$= A \left(B + C\right) + BC$ $\;\;\;$ $\left[\text{Note: } B + B' = 1\right]$