Applications of Definite Integration

Calculate the area of the figure bounded by the curve $y = \log x$, the straight line $x = 2$ and the X-axis.


The curve $y = \log x$ cuts the X-axis at the point $\left(1,0\right)$.

$\therefore \;$ The area between the curve $y = \log x$, the line $x = 2$ and the X-axis is:

$= \displaystyle \int_{1}^{2} y \; dx$

$= \displaystyle \int_{1}^{2} \log x \; dx$

$\begin{aligned} \int \log x \; dx & = \log x \int 1 \; dx - \int \left\{\dfrac{d}{dx} \left(\log x\right) \times \int 1 \; dx \right\} dx \\\\ & \left[\text{Note: Integration by parts: } \right. \\ & \left. \int u \cdot v \; dx = u \int v \; dx - \int \left\{\dfrac{du}{dx} \times \int v \; dx \right\} dx\right] \\\\ & = x \log x - \int \dfrac{1}{x} \times x \; dx \\\\ & = x \log x - \int dx \\\\ & = x \log x - x + c \end{aligned}$

$\begin{aligned} \therefore \; \displaystyle \int_{1}^{2} \log x \; dx & = \left[x \log x\right]_{1}^{2} - \left[x\right]_{1}^{2} \\\\ & = \left[2 \times \log 2 - 1 \times \log 1\right] - \left[2 - 1\right] \\\\ & = 2 \log \left(2\right) - 1 \\\\ & = \log \left(4\right) - 1 \end{aligned}$

$\therefore \;$ Required area $= \log \left(4\right) - 1$ sq units