Matrices

Using matrices, solve the following system of equations:

$x + y + z = 6$, $\;$ $x - y + z = 2$, $\;$ $2x + y - z = 1$


The given equations are: $\;$ $x + y + z = 6$, $\;$ $x - y + z = 2$, $\;$ $2x + y - z = 1$

Writing the given equations in the matrix form $\;$ $AX = B$ $\;$ as

$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix}$

where $\;$ $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & -1 \end{bmatrix}$, $\;$ $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, $\;$ $B = \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix}$

$\begin{aligned} \left|A\right| & = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & -1 \end{vmatrix} \\\\ & = 1 \left(1 - 1\right) - 1 \left(-1 - 2\right) + 1 \left(1 + 2\right) = 6 \neq 0 \end{aligned}$

$\implies$ $A$ is a non-singular matrix.

$\therefore \;$ The given system of equations has the unique solution $\;$ $X = A^{-1} B$

Cofactors of matrix $A$ are:

$A_{11} = \begin{vmatrix} -1 & 1 \\ 1 & -1 \end{vmatrix} = 1 - 1 = 0$

$A_{12} = \left(-1\right) \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} = \left(-1\right) \times \left(-1 -2\right) = 3$

$A_{13} = \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} = 1 + 2 = 3$

$A_{21} = \left(-1\right) \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = \left(-1\right) \times \left(-1 -1\right) = 2$

$A_{22} = \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} = -1 -2 = -3$

$A_{23} = \left(-1\right) \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = \left(-1\right) \times \left(1 - 2\right) = 1$

$A_{31} = \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} = 1 + 1 = 2$

$A_{32} = \left(-1\right) \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = \left(-1\right) \times \left(1 - 1\right) = 0$

$A_{33} = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -1 - 1 = -2$

$\therefore \;$ $adj \left(A\right) = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}^t = \begin{bmatrix} 0 & 3 & 3 \\ 2 & -3 & 1 \\ 2 & 0 & -2 \end{bmatrix}^t = \begin{bmatrix} 0 & 2 & 2 \\ 3 & -3 & 0 \\ 3 & 1 & -2 \end{bmatrix}$

$\begin{aligned} \therefore \; A^{-1} = \dfrac{adj \left(A\right)}{\left|A\right|} & = \dfrac{1}{6} \begin{bmatrix} 0 & 2 & 2 \\ 3 & -3 & 0 \\ 3 & 1 & -2 \end{bmatrix} \\\\ & = \begin{bmatrix} 0 & 1/3 & 1/3 \\ 1/2 & -1/2 & 0 \\ 1/2 & 1/6 & -1/3 \end{bmatrix} \end{aligned}$

$\begin{aligned} \therefore \; X = A^{-1} B & = \begin{bmatrix} 0 & 1/3 & 1/3 \\ 1/2 & -1/2 & 0 \\ 1/2 & 1/6 & -1/3 \end{bmatrix} \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix} \\\\ & = \begin{bmatrix} 0 + 2/3 + 1/3 \\ 3 - 1 + 0 \\ 3 + 1/3 - 1/3 \end{bmatrix} \\\\ i.e. \; \begin{bmatrix} x \\ y \\ z \end{bmatrix} & = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \end{aligned}$

$\implies$ $x = 1$, $\;$ $y = 2$, $\;$ $z = 3$