Matrices

If $A = \begin{bmatrix} 1 & \tan x \\ - \tan x & 1 \end{bmatrix}$, show that $\;$ $A^t A^{-1} = \begin{bmatrix} \cos 2x & - \sin 2x \\ \sin 2x & \cos 2x \end{bmatrix}$


$A = \begin{bmatrix} 1 & \tan x \\ - \tan x & 1 \end{bmatrix}$

Transpose of $A = A^t = \begin{bmatrix} 1 & \tan x \\ - \tan x & 1 \end{bmatrix}^t$

i.e. $\;$ $A^t = \begin{bmatrix} 1 & - \tan x \\ \tan x & 1 \end{bmatrix}$

i.e. $\;$ $A^t = \begin{bmatrix} 1 & \dfrac{- \sin x}{\cos x} \\ \dfrac{\sin x}{\cos x} & 1 \end{bmatrix}$

$A^{-1} = \dfrac{1}{\left|A\right|} \times adj \left(A\right)$

$\left|A\right| = \begin{vmatrix} 1 & \tan x \\ - \tan x & 1 \end{vmatrix} = 1 + \tan^2 x = \sec^2 x$

Cofactors of matrix $A$ are:

$A_{11} = 1$, $\;$ $A_{12} = \tan x$, $\;$ $A_{21} = - \tan x$, $\;$ $A_{22} = 1$

$\therefore \;$ $adj \left(A\right) = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}^t = \begin{bmatrix} 1 & \tan x \\ - \tan x & 1 \end{bmatrix}^t = \begin{bmatrix} 1 & - \tan x \\ \tan x & 1 \end{bmatrix}$

$\begin{aligned} \therefore \; A^{-1} & = \dfrac{1}{\sec^2 x} \begin{bmatrix} 1 & - \tan x \\ \tan x & 1 \end{bmatrix} \\\\ & = \cos^2 x \begin{bmatrix} 1 & \dfrac{- \sin x}{\cos x} \\ \dfrac{\sin x}{\cos x} & 1 \end{bmatrix} \\\\ & = \begin{bmatrix} \cos^2 x & - \sin x \cos x \\ \sin x \cos x & \cos^2 x \end{bmatrix} \end{aligned}$

$\begin{aligned} \therefore \; A^t A^{-1} & = \begin{bmatrix} 1 & \dfrac{- \sin x}{\cos x} \\ \dfrac{\sin x}{\cos x} & 1 \end{bmatrix} \begin{bmatrix} \cos^2 x & - \sin x \cos x \\ \sin x \cos x & \cos^2 x \end{bmatrix} \\\\ & = \begin{bmatrix} \cos^2 x - \dfrac{\sin x}{\cos x} \times \sin x \cos x & - \sin x \cos x - \dfrac{\sin x}{\cos x} \times \cos^2 x \\ \dfrac{\sin x}{\cos x} \times \cos^2 x + \sin x \cos x & \dfrac{\sin x}{\cos x} \times \left(- \sin x \cos x\right) + \cos^2 x \end{bmatrix} \\\\ & = \begin{bmatrix} \cos^2 x - \sin^2 x & - 2 \sin x \cos x \\ 2 \sin x \cos x & \cos^2 x - \sin^2 x \end{bmatrix} \\\\ & = \begin{bmatrix} \cos 2x & - \sin 2x \\ \sin 2x & \cos 2x \end{bmatrix} \end{aligned}$