Matrices

If $A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then find $k$ such that $A^2 = kA - 2 I$


$A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$, $\;$ $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 2 \times 2$ $\;$ identity matrix

$\begin{aligned} A^2 = A \times A & = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} \times \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} \\\\ & = \begin{bmatrix} 3 \times 3 - 2 \times 4 & 3 \times \left(-2\right) - 2 \times \left(-2\right) \\ 4 \times 3 - 2 \times 4 & 4 \times \left(-2\right) - 2 \times \left(-2\right) \end{bmatrix} \\\\ & = \begin{bmatrix} 1 & -2 \\ 4 & -4 \end{bmatrix} \end{aligned}$

$\begin{aligned} kA & = k \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix} \\\\ & = \begin{bmatrix} 3k & - 2k \\ 4k & -2k \end{bmatrix} \end{aligned}$

$\begin{aligned} 2I & = 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\\\ & = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \end{aligned}$

Given: $\;$ $A^2 = kA - 2I$

i.e. $\;$ $\begin{bmatrix} 1 & -2 \\ 4 & -4 \end{bmatrix} = \begin{bmatrix} 3k & -2k \\ 4k & -2k \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$

i.e. $\;$ $\begin{bmatrix} 1 & -2 \\ 4 & -4 \end{bmatrix} = \begin{bmatrix} 3k - 2 & -2k \\ 4k & -2k - 2 \end{bmatrix}$

When two matrices are equal, their corresponding elements are equal.

$\;$ We have, $\;$ $1 = 3k - 2$; $\;$ $-2 = -2 k$; $\;$ $4 = 4k$; $\;$ $-4 = -2k - 2$

These equations give $\;$ $k = 1$