Matrices

If $A = \begin{bmatrix} 2 & 0 \\ -3 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 4 \\ 3 & 1 \end{bmatrix}$, find a matrix $X$ such that $3 A + 4 X = 5 B$


Given: $\;$ $A = \begin{bmatrix} 2 & 0 \\ -3 & 1 \end{bmatrix}$, $\;$ $B = \begin{bmatrix} -2 & 4 \\ 3 & 1 \end{bmatrix}$

The matrix equation is $\;$ $3 A + 4 X = 5 B$

i.e. $\;$ $4 X = 5 B - 3 A$

$\implies$ $X = \dfrac{5}{4} B - \dfrac{3}{4}A$ $\;\;\; \cdots \; (1)$

Now,

$\begin{aligned} \dfrac{5}{4} B & = \dfrac{5}{4} \begin{bmatrix} -2 & 4 \\ 3 & 1 \end{bmatrix} \\\\ & = \begin{bmatrix} -2 \times \dfrac{5}{4} & 4 \times \dfrac{5}{4} \\ 3 \times \dfrac{5}{4} & 1 \times \dfrac{5}{4} \end{bmatrix} \\\\ & = \begin{bmatrix} -10/4 & 20 / 4 \\ 15 / 4 & 5 / 4 \end{bmatrix} \;\;\; \cdots \; (2a) \end{aligned}$

$\begin{aligned} \dfrac{3}{4} A & = \dfrac{3}{4} \begin{bmatrix} 2 & 0 \\ -3 & 1 \end{bmatrix} \\\\ & = \begin{bmatrix} 2 \times \dfrac{3}{4} & 0 \times \dfrac{3}{4} \\ -3 \times \dfrac{3}{4} & 1 \times \dfrac{3}{4} \end{bmatrix} \\\\ & = \begin{bmatrix} 6/4 & 0 \\ -9 / 4 & 3 / 4 \end{bmatrix} \;\;\; \cdots \; (2b) \end{aligned}$

$\therefore \;$ In view of equations $(2a)$ and $(2b)$ equation $(1)$ becomes,

$\begin{aligned} X & = \begin{bmatrix} -10/4 & 20/4 \\ 15/4 & 5/4 \end{bmatrix} - \begin{bmatrix} 6/4 & 0 \\ -9/4 & 3/4 \end{bmatrix} \\\\ & = \begin{bmatrix} -16/4 & 20/4 \\ 24/4 & 2/4 \end{bmatrix} \\\\ & = \begin{bmatrix} -4 & 5 \\ 6 & 1/2 \end{bmatrix} \end{aligned}$