A line $AB$ meets the X-axis at $A$ and the Y-axis at $B$. $P \left(4, -1\right)$ divides $AB$ in the ratio $1 : 2$.
- Find the coordinates of $A$ and $B$.
- Find the equation of the line through $P$ and perpendicular to $AB$.
- Given: $\;$ Line $AB$ meets the X-axis at $A$ and the Y-axis at $B$.
$\therefore \;$ Let the coordinates of point $A$ be $\left(a, 0\right)$
and the coordinates of point $B$ be $\left(0, b\right)$.
Given: $\;$ $P \left(4, -1\right)$ divides $AB$ in the ratio $1 : 2$
$\therefore \;$ We have by section formula,
$4 = \dfrac{1 \times 0 + 2 \times a}{1 + 2}$
i.e. $\;$ $12 = 2a$ $\implies$ $a = 6$
and $\;$ $-1 = \dfrac{1 \times b + 2 \times 0}{1 + 2}$ $\implies$ $b = -3$
$\therefore \;$ $A = \left(6, 0\right)$; $\;$ $B = \left(0, -3\right)$ - Slope of $AB = m_1 = \dfrac{-3 - 0}{0 - 6} = \dfrac{1}{2}$
Slope of line perpendicular to $AB = m_2 = \dfrac{-1}{m_1} = -2$
The required line passes through the point $P \left(4, -1\right)$
$\therefore \;$ Equation of the required line is
$y + 1 = -2 \left(x - 4\right)$
i.e. $\;$ $y + 1 = -2x + 8$
i.e. $\;$ $2x + y = 7$