Correlation and Regression

The data for marks in Physics and History obtained by $10$ students is as given:

Marks in Physics $15$ $12$ $8$ $8$ $7$ $7$ $7$ $6$ $5$ $3$
Marks in History $10$ $25$ $17$ $11$ $13$ $17$ $20$ $13$ $9$ $15$

Using this data, compute the Karl Pearson's coefficient of correlation between the marks in Physics and History obtained by the $10$ students.


Number of students $= n = 10$

Marks in Physics $\left(x\right)$ Marks in History $\left(y\right)$
$15$ $10$
$12$ $25$
$8$ $17$
$8$ $11$
$7$ $13$
$7$ $17$
$7$ $20$
$6$ $13$
$5$ $9$
$3$ $15$
$\Sigma x = 78$ $\Sigma y = 150$


$\overline{x} = \dfrac{\Sigma x}{n} = \dfrac{78}{10} = 7.8$, $\;$ $\overline{y} = \dfrac{\Sigma y}{n} = \dfrac{150}{10} = 15$

Marks in Physics $\left(x\right)$ Marks in History $\left(y\right)$ $d_x = x - \overline{x}$ $d_y = y - \overline{y}$ $d_x \cdot d_y$ $d_x^2$ $d_y^2$
$15$ $10$ $7.2$ $- 5$ $- 36$ $51.84$ $25$
$12$ $25$ $4.2$ $10$ $42$ $17.64$ $100$
$8$ $17$ $0.2$ $2$ $0.4$ $0.04$ $4$
$8$ $11$ $0.2$ $- 4$ $- 0.8$ $0.04$ $16$
$7$ $13$ $- 0.8$ $- 2$ $1.6$ $0.64$ $4$
$7$ $17$ $- 0.8$ $2$ $- 1.6$ $0.64$ $4$
$7$ $20$ $- 0.8$ $5$ $- 4$ $0.64$ $25$
$6$ $13$ $- 1.8$ $- 2$ $3.6$ $3.24$ $4$
$5$ $9$ $- 2.8$ $- 6$ $16.8$ $7.84$ $36$
$3$ $15$ $- 4.8$ $0$ $0$ $23.04$ $0$
$\Sigma x = 78$ $\Sigma y = 150$ $\Sigma d_x d_y = 22$ $\Sigma d_x^2 = 82.56$ $\Sigma d_y^2 = 218$


Karl Pearson coefficient $= r = \dfrac{\Sigma d_x d_y}{\sqrt{\Sigma d_x^2 \cdot \Sigma d_y^2}}$

i.e. $\;$ $r = \dfrac{22}{\sqrt{82.56 \times 218}} = \dfrac{22}{\sqrt{17998.08}} = \dfrac{22}{134.16} = 0.1640$ (approx)