Circle

In the figure, lines $AB$ and $CD$ pass through the center $O$ of a circle.

If $\angle AOD = 75^\circ$ and $\angle OCE = 40^\circ$, find $\angle CDE$ and $\angle OBE$.


Given: $\;$ $O$ is the center of the circle and line $CD$ passes through $O$.

$\implies$ $CD$ is a diameter of the given circle.

Then, $\;$ $\angle CED = 90^\circ$ $\;\;\;$ [angle in a semicircle]

Given: $\;$ $\angle OCE = 40^\circ$

Points $D$, $O$ and $C$ are collinear points.

$\therefore \;$ $\angle DCE = \angle OCE = 40^\circ$

Now, in right triangle $CED$,

$\angle DCE + \angle CED + \angle CDE = 180^\circ$ $\;\;\;$ [sum of angles of a triangle equal $180^\circ$]

i.e. $\;$ $40^\circ + 90^\circ + \angle CDE = 180^\circ$

$\implies$ $\angle CDE = 50^\circ$

Given: $\;$ $\angle AOD = 75^\circ$

Now, $\;$ $\angle COM = \angle AOD = 75^\circ$ $\;\;\;$ [vertically opposite angles are equal]

In $\triangle OCM$,

$\angle OCM + \angle CMO + \angle COM = 180^\circ$ $\;\;\;$ [sum of angles of a triangle equal $180^\circ$]

i.e. $\;$ $40^\circ + \angle CMO + 75^\circ = 180^\circ$

i.e. $\;$ $\angle CMO = 65^\circ$

Now, $\;$ $\angle EMB = \angle CMO = 65^\circ$ $\;\;\;$ [vertically opposite angles are equal]

In $\triangle MBE$,

$\angle CED = \angle EMB + \angle MBE$ $\;\;\;$ [exterior angle is equal to the sum of the two interior opposite angles]

$\therefore \;$ $\angle MBE = \angle CED - \angle EMB = 90^\circ - 65^\circ = 25^\circ$

But $\;$ $\angle MBE = \angle OBE$ $\;\;\;$ [Points $O$, $M$ and $B$ are collinear points]

$\implies$ $\angle OBE = 25^\circ$