Analytical Geometry - Conics - Ellipse

Find the equation of ellipse whose latus-rectum is $5$ and eccentricity is $\dfrac{2}{3}$.


Latus-rectum of ellipse $= \dfrac{2b^2}{a} = 5$ (given)

$\implies$ $b^2 = \dfrac{5 a}{2}$ $\;\;\; \cdots \; (1)$

Eccentricity $= e = \dfrac{2}{3}$ (given)

For an ellipse, $\;$ $b^2 = a^2 \left(1 - e^2\right)$ $\;\;\; \cdots \; (2)$

Substituting the values of $b^2$ and $e$ in equation $(2)$ gives,

$\dfrac{5a}{2} = a^2 \left[1 - \left(\dfrac{2}{3}\right)^2\right]$

i.e. $\;$ $\dfrac{5}{2} = \dfrac{5a}{9}$

i.e. $\;$ $a = \dfrac{9}{2}$ $\implies$ $a^2 = \dfrac{81}{4}$

Substituting the value of $a$ in equation $(1)$ gives,

$b^2 = 5 \times \dfrac{9}{2} \times \dfrac{1}{2} = \dfrac{45}{4}$

The equation of ellipse is $\;\;$ $\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1$

i.e. $\;$ $\dfrac{x^2}{81 / 4} + \dfrac{y^2}{45 / 4} = 1$

i.e. $\;$ $\dfrac{4 x^2}{81} + \dfrac{4 y^2}{45} = 1$