Statistics

Find the mean of the following distribution of marks using step deviation method.

Marks $30 - 40$ $40 - 50$ $50 - 60$ $60 - 70$ $70 - 80$ $80 - 90$ $90 - 100$
Number of students $8$ $12$ $24$ $16$ $9$ $7$ $4$


Class size $= h = 10$

Let assumed mean $= A = 65$

Marks Frequency $\left(f_i\right)$ Mid-value $\left(x_i\right)$ deviation $= x_i - A$ $ t_i = \dfrac{x_i - A}{h} $ $ f_i \times t_i $
$30 - 40$ $8$ $35$ $-30$ $-3$ $-24$
$40 - 50$ $12$ $45$ $-20$ $-2$ $-24$
$50 - 60$ $24$ $55$ $-10$ $-1$ $-24$
$60 - 70$ $16$ $65$ $0$ $0$ $0$
$70 - 80$ $9$ $75$ $10$ $1$ $9$
$80 - 90$ $7$ $85$ $20$ $2$ $14$
$90 - 100$ $4$ $95$ $30$ $3$ $12$


$\Sigma f_i = 80$, $\;$ $\Sigma f_i \times t_i = -37$

Mean $= A + \dfrac{\Sigma f_i \times t_i}{\Sigma f_i} \times h$

i.e. $\;$ Mean $= 65 + \dfrac{\left(-37\right)}{80} \times 10 = 65 - 4.625 = 60.375$