Statistics

The mean of the following distribution is $24$. Find the missing frequency '$a$'.

Class Interval $0 - 10$ $10 - 20$ $20 - 30$ $30 - 40$ $40 - 50$
Frequency $10$ $6$ $a$ $12$ $5$


Class Interval Mid value $x_i$ Frequency $f_i$ $f_i x_i$
$0 - 10$ $5$ $10$ $50$
$10 - 20$ $15$ $6$ $90$
$20 - 30$ $25$ $a$ $25 a$
$30 - 40$ $35$ $12$ $420$
$40 - 50$ $45$ $5$ $225$
$\Sigma f_i = 33 + a$ $\Sigma f_i x_i =785 + 25 a$


Mean $= \dfrac{\Sigma f_i x_i}{\Sigma f_i} = \dfrac{785 + 25 a}{33 + a}$

Given: $\;$ Mean $= 24$

i.e. $\;$ $\dfrac{785 + 25 a}{33 + a} = 24$

i.e. $\;$ $785 + 25 a = 792 + 24 a$

$\implies$ $a = 7$