Similarity

In the figure, $\;$ $\dfrac{\text{area } \left(\triangle PTS\right)}{\text{area } \left(\triangle TSR\right)} = \dfrac{3}{1}$, $\;$ $TS \parallel QR$.

Find
  1. $PS : SR$
  2. $TS : QR$
  3. $\text{area } \left(\triangle PTS\right) : \text{area } \left(\triangle PQR\right)$
  4. $\text{area } \left(\triangle PTS\right) : \text{area} \left(\text{quadrilateral } TQRS\right)$


  1. Let height of $\triangle PTS = $ height of $\triangle TSR = h$

    From the figure,

    $\text{area} \left(\triangle PTS\right) = \dfrac{1}{2} \times PS \times h$

    $\text{area} \left(\triangle TSR\right) = \dfrac{1}{2} \times SR \times h$

    Given: $\;$ $\text{area } \left(\triangle PTS\right) : \text{area } \left(\triangle TSR\right) = 3 : 1$

    i.e. $\;$ $\dfrac{1}{2} \times PS \times h: \dfrac{1}{2} \times SR \times h = 3 : 1$

    i.e. $\;$ $PS : SR = 3 : 1$


  2. Given: $\;$ $TS \parallel QR$

    $PR$ is a transversal

    $\therefore \;$ $\angle PST = \angle PRQ$ $\;\;\;$ [corresponding angles] $\;\;\; \cdots \; (1)$

    In $\triangle PTS$ and $\triangle PQR$,

    $\angle P = \angle P$ $\;\;\;$ [common angle]

    $\angle PST = \angle PRQ$ $\;\;\;$ [by (1)]

    $\therefore \;$ $\triangle PTS \sim \triangle PQR$ $\;\;\;$ [by AA axiom of similarity]

    $\implies$ $\dfrac{TS}{QR}= \dfrac{PS}{PR} = \dfrac{PT}{PQ}$ $\;\;\; \cdots (2)$

    $\;\;\;$ [corresponding sides of similar triangles are in proportion]

    $\because \;$ $\dfrac{PS}{SR} = \dfrac{3}{1}$ $\;\;\;$ [part (a)]

    $\therefore \;$ $\dfrac{PS}{PR} = \dfrac{PS}{PS + SR} = \dfrac{3}{3 + 1} = \dfrac{3}{4}$ $\;\;\; \cdots \; (3)$

    In view of equation $(3)$, equation $(2)$ becomes

    $TS : QR = 3 : 4$


  3. $\because \;$ $\triangle PTS \sim \triangle PQR$

    $\implies$ $\dfrac{\text{area } \left(\triangle PTS\right)}{\text{area } \triangle PQR} = \dfrac{TS^2}{QR^2} = \dfrac{PS^2}{PR^2} = \dfrac{PT^2}{PQ^2}$

    [areas of two similar triangles are proportional to the squares of their corresponding sides]

    $\therefore \;$ $\text{area } \left(\triangle PTS\right) : \text{area } \left(\triangle PQR\right) = 3^2 : 4^2 = 9 : 16$


  4. $\dfrac{\text{area } \left(\triangle PTS\right)}{\text{area } \left(\text{quadrilateral } TQRS\right)} = \dfrac{\text{area } \left(\triangle PTS\right)}{\text{area } \left(\triangle PQR\right) - \text{area } \left(\triangle PTS\right)}$

    i.e. $\;$ $\dfrac{\text{area } \left(\triangle PTS\right)}{\text{area } \left(\text{quadrilateral } TQRS\right)} = \dfrac{9}{16 - 9}$

    $\therefore \;$ $\text{area } \left(\triangle PTS\right) : \text{area} \left(\text{quadrilateral } TQRS\right) = 9 : 7$