Similarity

In the figure, $ABC$ and $CEF$ are two triangles where $BA$ is parallel to $CE$ and $AF : AC = 5 : 8$.

  1. Prove that $\triangle ADF \sim \triangle CEF$

  2. Find $AD$ if $CE = 6 \; cm$.

  3. If $DE \parallel BC$, find $\;$ $\dfrac{\text{Area } \left(\triangle ADF\right)}{\text{Area } \left(\triangle ABC\right)}$.


  1. $BA \parallel CE$ $\;\;$ [Given]

    $AC$ is a transversal.

    $\therefore \;$ $\angle DAF = \angle ECF$ $\;\;$ [Alternate angles] $\;\;\; \cdots \; (1)$

    Also, $\;$ $\angle AFD = \angle EFC$ $\;\;$ [Vertically opposite angles] $\;\;\; \cdots \; (2)$

    $\therefore \;$ From $(1)$ and $(2)$, $\;$ $\triangle ADF \sim \triangle CEF$ $\;\;$ [By Angle-Angle postulate]


  2. $\because \;$ $\triangle ADF \sim \triangle CEF$,

    $\dfrac{AD}{CE} = \dfrac{AF}{CF}$ $\;\;$ [corresponding sides of similar triangles are proportional]

    $\implies$ $AD = CE \times \dfrac{AF}{CF}$ $\;\;\; \cdots \; (3)$

    Given: $\;$ $\dfrac{AF}{AC} = \dfrac{5}{8}$

    $\implies$ $1 - \dfrac{AF}{AC} = 1 - \dfrac{5}{8}$

    i.e. $\;$ $\dfrac{AC - AF}{AC} = \dfrac{CF}{AC} = \dfrac{3}{8}$

    i.e. $\;$ $\dfrac{AC}{CF} = \dfrac{8}{3}$

    $\therefore \;$ $\dfrac{AF}{AC} \times \dfrac{AC}{CF} = \dfrac{5}{8} \times \dfrac{8}{3}$

    i.e. $\;$ $\dfrac{AF}{CF} = \dfrac{5}{3}$ $\;\;\; \cdots \; (4)$

    Given: $\;$ $CE = 6 \; cm$ $\;\;\; \cdots \; (5)$

    In view of equations $(4)$ and $(5)$, equation $(3)$ becomes

    $AD = 6 \times \dfrac{5}{3} = 10 \; cm$


  3. Given: $\;$ $DE \parallel BC$ $\implies$ $DF \parallel BC$

    $AB$ is a transversal.

    $\therefore \;$ $\angle ADF = \angle ABC$ $\;\;$ [Corresponding angles] $\;\;\; \cdots \; (6)$

    $\angle BAC = \angle DAF$ $\;\;$ [Common angle] $\;\;\; \cdots \; (7)$

    $\therefore \;$ From $(6)$ and $(7)$, $\;$ $\triangle ADF \sim \triangle ABC$ $\;\;$ [By Angle-Angle postulate]

    $\therefore \;$ $\dfrac{\text{Area } \left(\triangle ADF\right)}{\text{Area } \left(\triangle ABC\right)} = \dfrac{AF^2}{AC^2}$

    [Areas of two similar triangles are proportional to the squares of their corresponding sides]

    $\therefore \;$ $\dfrac{\text{Area } \left(\triangle ADF\right)}{\text{Area } \left(\triangle ABC\right)} = \left(\dfrac{5}{8}\right)^2 = \dfrac{25}{64}$