Matrices

Given $\;$ $\begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 1 & -4 \end{bmatrix} = A + 7 I$

Find matrix $A$ if $I$ is an unit matrix of order $2 \times 2$.


$I$ is an unit matrix of order $2 \times 2$

$\therefore \;$ $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Now, $\;$ $\begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 1 & -4 \end{bmatrix} = A + 7 I$

$\implies$ $\begin{bmatrix} 2 \times 0 + \left(-1\right) \times 1 & 2 \times 2 + \left(-1\right) \times \left(-4\right) \\ 0 \times 0 + 3 \times 1 & 0 \times 2 + 3 \times \left(-4\right) \end{bmatrix} = A + 7 \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

i.e. $\;$ $\begin{bmatrix} -1 & 8 \\ 3 & -12 \end{bmatrix} = A + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$

i.e. $\;$ $\begin{bmatrix} -1 & 8 \\ 3 & -12 \end{bmatrix} - \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = A$

i.e. $\;$ $A = \begin{bmatrix} -1 - 7 & 8 - 0 \\ 3 - 0 & -12 - 7 \end{bmatrix}$

i.e. $\;$ $A = \begin{bmatrix} -8 & 8 \\ 3 & -19 \end{bmatrix}$