Matrices

Given: $\;$ $A = \begin{bmatrix} 2 & -6 \\ 2 & 0 \end{bmatrix}$, $\;$ $B = \begin{bmatrix} -3 & 2 \\ 4 & 0 \end{bmatrix}$ $\;$ and $\;$ $C = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$. Find matrix $X$ such that $A + 2 X = 2B + C$.


Let $X = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$

Given: $\;$ $A + 2 X = 2 B + C$

i.e. $\;$ $\begin{bmatrix} 2 & -6 \\ 2 & 0 \end{bmatrix} + 2 \begin{bmatrix} p & q \\ r & s \end{bmatrix} = 2 \begin{bmatrix} -3 & 2 \\ 4 & 0 \end{bmatrix} + \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$

i.e. $\;$ $\begin{bmatrix} 2 + 2p & -6 + 2q \\ 2 + 2r & 0 + 2s \end{bmatrix} = \begin{bmatrix} -6 + 4 & 4 + 0 \\ 8 + 0 & 0 + 2 \end{bmatrix}$

i.e. $\;$ $\begin{bmatrix} 2 + 2p & -6 + 2q \\ 2 + 2r & 2s \end{bmatrix} = \begin{bmatrix} -2 & 4 \\ 8 & 2 \end{bmatrix}$

Two matrices are equal when all their corresponding elements are equal.

i.e. $\;$ $2 + 2p = -2$ $\implies$ $2 p = -4$ $\implies$ $p = -2$

$-6 + 2q = 4$ $\implies$ $2 q = 10$ $\implies$ $q = 5$

$2 + 2 r = 8$ $\implies$ $2 r = 6$ $\implies$ $r = 3$

$2 s = 2$ $\implies$ $s = 1$

$\therefore \;$ $X = \begin{bmatrix} -2 & 5 \\ 3 & 1 \end{bmatrix}$