Answer the entire question on a graph paper.
Take a scale of $1 \; cm = 1 $ unit on both the axes.
- Plot point $A \left(6,6\right)$ and reflect it in the line $x = 0$ to obtain the point $A'$.
- Plot point $B \left(-3, 3\right)$ and reflect it in the $Y$ axis to obtain the point $B'$.
- Plot point $C \left(0,3\right)$ and reflect it in the line $y = -1$ to obtain the point $C'$.
- Join $A, \; C, \; A', \; B, \; C', \; B', \; A$ to form a geometric figure. Assign a name to the figure.
- Identify a point on the figure that is invariant on reflection in the line $x = 0$.
- Point $A \left(6, 6\right)$ reflected in the line $x = 0$ i.e. $Y$ axis gives the point $A' \left(-6,6\right)$.
- Point $B \left(-3, 3\right)$ reflected in the $Y$ axis gives the point $B' \left(3,3\right)$.
- Point $C \left(0, 3\right)$ reflected in the line $y = -1$ gives the point $C' \left(0, 5\right)$.
- The geometric figure $ACA'BC'B'A$ is an arrow.
- The points $C \left(0, 3\right)$ and $C' \left(0, -5\right)$ on the figure are invariant on reflection in the line $x = 0$.