Taking a scale of $1 \; cm = 1$ unit on both the axes on a graph paper,
- plot the points $A \left(-3, 3\right)$ and $B \left(2,2\right)$;
- write the coordinates of $A'$ and $B'$, the images of $A$ and $B$ respectively on reflection in origin;
- write the geometrical name of the figure $ABA'B'$;
- write the coordinates of two invariant points in Y axis in the figure.
- Points $A \left(-3,3\right)$ and $B \left(2,2\right)$ are plotted.
- $A' \left(3,-3\right)$ and $B' \left(-2, -2\right)$ are the images of $A$ and $B$ on reflection in origin.
- $ABA'B'$ is a parallelogram.
- $P \left(0, 2.4\right)$ and $Q \left(0, -2.4\right)$ are two invariant points in Y axis in the figure.