In the given figure, O is the center of the circle. If $\angle POR = 150^\circ$ and $\angle ORQ = 60^\circ$, find the measure of:
- $\angle PQR$
- $\angle OPR$
- $\angle QRP$
- $\angle RPQ$
-
Given: $\angle POR = 150^\circ$
$\therefore \;$ Reflex $\angle POR = 360^\circ - 150^\circ = 210^\circ$
Now, $\;$ $\angle PQR = \dfrac{1}{2} \times \text{ Reflex } \angle POR$
[$\because \;$ angle at the center is twice the angle at the remaining circumference]
$\therefore \;$ $\angle PQR = \dfrac{210^\circ}{2} = 105^\circ$
-
Join $PR$.
In $\triangle POR$, $\;$ $OP = OR = $ radii of the same circle
$\therefore \;$ $\angle OPR = \angle ORP$ $\;\;\;$ [$\because \;$ angles opposite to equal sides are equal]
Now, $\;$ $\angle POR + \angle OPR + \angle ORP = 180^\circ$ $\;\;\;$ [$\because \;$ sum of angles of a $\triangle$ equal $180^\circ$]
i.e. $\;$ $150^\circ + 2 \angle OPR = 180^\circ$
i.e. $\;$ $2 \angle OPR = 30^\circ$ $\implies$ $\angle OPR = 15^\circ$
-
$\because \;$ $\angle OPR = \angle ORP$ $\implies$ $\angle ORP = 15^\circ$
From the figure, $\;$ $\angle ORQ = \angle ORP + \angle QRP$
Given: $\;$ $\angle ORQ = 60^\circ$
$\therefore \;$ We have, $\;$ $60^\circ = 15^\circ + \angle QRP$
$\implies$ $\angle QRP = 60^\circ - 15^\circ = 45^\circ$
-
In $\triangle PQR$, $\;$ $\angle RPQ + \angle PQR + \angle QRP = 180^\circ$ $\;\;$ [$\because \;$ sum of angles of a $\triangle$ equal $180^\circ$]
i.e. $\;$ $\angle RPQ + 105^\circ + 45^\circ = 180^\circ$
$\implies$ $\angle RPQ = 30^\circ$