Properties of Triangles

In a $\triangle ABC$, prove that $\;$ $\Delta = 4 \; R \; r \; \cos \left(\dfrac{A}{2}\right) \; \cos \left(\dfrac{B}{2}\right) \; \cos \left(\dfrac{C}{2}\right)$


In-radius $\;$ $r = 4 R \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right)$

Circumradius $\;$ $R = \dfrac{a \; b \; c}{4 \Delta}$

$\sin A = \dfrac{2 \Delta}{b c}$, $\;$ $\sin B = \dfrac{2 \Delta}{c a}$, $\;$ $\sin C = \dfrac{2 \Delta}{a b}$

where $\;$ $\Delta$ $\;$ is the area of $\triangle ABC$.

$\begin{aligned} RHS & = 4 \; R \; r \; \cos \left(\dfrac{A}{2}\right) \; \cos \left(\dfrac{B}{2}\right) \; \cos \left(\dfrac{C}{2}\right) \\\\ & = 4 R \times 4 R \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right) \times \cos \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right) \\\\ & \left[\text{Note: } \sin \left(\dfrac{\theta}{2}\right) \cos \left(\dfrac{\theta}{2}\right) = \dfrac{\sin \theta}{2}\right] \\\\ & = 16 R^2 \times \dfrac{\sin A}{2} \times \dfrac{\sin B}{2} \times \dfrac{\sin C}{2} \\\\ & = 2 R^2 \sin A \sin B \sin C \\\\ & = 2 \times \left(\dfrac{abc}{4 \Delta}\right)^2 \times \left(\dfrac{2 \Delta}{bc}\right) \times \left(\dfrac{2 \Delta}{ca}\right) \times \left(\dfrac{2 \Delta}{ab}\right) \\\\ & = \dfrac{16 \; \Delta^3 \; a^2 \; b^2 \; c^2}{16 \; \Delta^2 \; a^2 \; b^2 \; c^2} \\\\ & = \Delta = LHS \end{aligned}$

Hence proved.