Properties of Triangles

In a $\triangle ABC$, prove that $\;$ $a \left(r r_1 + r_2 r_3\right) = b \left(r r_2 + r_3 r_1\right) = c \left(r r_3 + r_1 r_2\right)$


Inradius $= r = \dfrac{\Delta}{s}$

Escribed radius $= r_1 = \dfrac{\Delta}{s - a}$

Escribed radius $= r_2 = \dfrac{\Delta}{s - b}$

Escribed radius $= r_3 = \dfrac{\Delta}{s - c}$

where $\;$ $\Delta = \sqrt{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}$ $\;$ is the area of $\triangle ABC$

i.e. $\;$ $\Delta^2 = s \left(s - a\right) \left(s - b\right) \left(s - c\right)$

and $\;$ $s = \dfrac{a + b + c}{2}$ $\;$ is the semi-perimeter of $\triangle ABC$

i.e. $\;$ $2 s = a + b + c$

Now,

$\begin{aligned} a \left(r r_1 + r_2 r_3\right) & = a \left[\dfrac{\Delta}{s} \times \dfrac{\Delta}{\left(s - a\right)} + \dfrac{\Delta}{\left(s - b\right)} \times \dfrac{\Delta}{\left(s - c\right)}\right] \\\\ & = \dfrac{a \Delta^2 \left[s^2 - sc - s b + b c + s^2 - s a\right]}{s \left(s - a\right) \left(s - b\right) \left(s - c \right)} \\\\ & = a \left[2 s^2 - s \left(a + b + c\right) + bc\right] \\\\ & = a \left[2 s^2 - 2 s^2 + bc\right] \\\\ & = a b c \;\;\; \cdots \; (1a) \end{aligned}$

$\begin{aligned} b \left(r r_2 + r_3 r_1\right) & = b \left[\dfrac{\Delta}{s} \times \dfrac{\Delta}{\left(s - b\right)} + \dfrac{\Delta}{\left(s - c\right)} \times \dfrac{\Delta}{\left(s - a\right)}\right] \\\\ & = \dfrac{b \Delta^2 \left[s^2 - s a - s c + a c + s^2 - s b\right]}{s \left(s - a\right) \left(s - b\right) \left(s - c \right)} \\\\ & = b \left[2 s^2 - s \left(a + b + c\right) + ac\right] \\\\ & = b \left[2 s^2 - 2 s^2 + ac\right] \\\\ & = a b c \;\;\; \cdots \; (1b) \end{aligned}$

$\begin{aligned} c \left(r r_3 + r_1 r_2\right) & = c \left[\dfrac{\Delta}{s} \times \dfrac{\Delta}{\left(s - c\right)} + \dfrac{\Delta}{\left(s - a\right)} \times \dfrac{\Delta}{\left(s - b\right)}\right] \\\\ & = \dfrac{c \Delta^2 \left[s^2 - s b - s a + a b + s^2 - s c\right]}{s \left(s - a\right) \left(s - b\right) \left(s - c \right)} \\\\ & = c \left[2 s^2 - s \left(a + b + c\right) + ab\right] \\\\ & = c \left[2 s^2 - 2 s^2 + ab\right] \\\\ & = a b c \;\;\; \cdots \; (1c) \end{aligned}$

$\therefore \;$ We have from equations $(1a)$, $(1b)$ and $(1c)$,

$a \left(r r_1 + r_2 r_3\right) = b \left(r r_2 + r_3 r_1\right) = c \left(r r_3 + r_1 r_2\right)$

Hence proved.