In a △ABC, prove that r1bc+r2ca+r3ab=1r−12R
Escribed radius =r1=4Rsin(A2)cos(B2)cos(C2)
Escribed radius =r2=4Rsin(B2)cos(C2)cos(A2)
Escribed radius =r3=4Rsin(C2)cos(A2)cos(B2)
By sine rule, asinA=bsinB=csinC=2R
⟹ a=2RsinA, b=2RsinB, c=2RsinC
where R is the circumradius of △ABC
Now,
r1bc=4Rsin(A2)cos(B2)cos(C2)2RsinB×2RsinC[Note: sinθ=2sin(θ2)cos(θ2)]=sin(A2)cos(B2)cos(C2)R×2sin(B2)cos(B2)×2sin(C2)cos(C2)=sin(A2)4Rsin(B2)sin(C2)=sin2(A2)4Rsin(A2)sin(B2)sin(C2)=sin2(A2)r⋯(1a)
Similarly,
r2ca=sin2(B2)r ⋯(1b) and r3ab=sin2(C2)r ⋯(1c)
∴ In view of equations (1a), (1b) and (1c), we have
\begin{aligned}
LHS & = \dfrac{r_1}{bc} + \dfrac{r_2}{ca} + \dfrac{r_3}{ab} \\\\
& = \dfrac{1}{r} \left[\sin^2 \left(\dfrac{A}{2}\right) + \sin^2 \left(\dfrac{B}{2}\right) + \sin^2 \left(\dfrac{C}{2}\right)\right] \;\;\; \cdots \; (2)
\end{aligned}
\left[\text{Note: } \sin^2 \left(\dfrac{\theta}{2}\right) = \dfrac{1 - \cos \theta}{2}\right]
Now,
\sin^2 \left(\dfrac{A}{2}\right) + \sin^2 \left(\dfrac{B}{2}\right) + \sin^2 \left(\dfrac{C}{2}\right)
= \dfrac{1 - \cos A}{2} + \dfrac{1 - \cos B}{2} + \sin^2 \left(\dfrac{C}{2}\right)
= 1 - \dfrac{1}{2} \left[\cos A + \cos B\right] + \sin^2 \left(\dfrac{C}{2}\right)
\left[\text{Note: }\cos \alpha + \cos \beta = 2 \cos \left(\dfrac{\alpha + \beta}{2}\right) \cos \left(\dfrac{\alpha - \beta}{2}\right)\right]
= 1 - \cos \left(\dfrac{A + B}{2}\right) \cos \left(\dfrac{A - B}{2}\right) + \sin^2 \left(\dfrac{C}{2}\right)
\left[\text{Note: In } \triangle ABC, \; A + B + C = \pi \implies \dfrac{A + B}{2} = \dfrac{\pi}{2} - \dfrac{C}{2} \right.
\left. \therefore \; \cos \left(\dfrac{A + B}{2}\right) = \cos \left(\dfrac{\pi}{2} - \dfrac{C}{2}\right) = \sin \left(\dfrac{C}{2}\right) \right]
\therefore \; \sin^2 \left(\dfrac{A}{2}\right) + \sin^2 \left(\dfrac{B}{2}\right) + \sin^2 \left(\dfrac{C}{2}\right)
= 1 - \sin \left(\dfrac{C}{2}\right) \cos \left(\dfrac{A - B}{2}\right) + \sin^2 \left(\dfrac{C}{2}\right)
= 1 - \sin \left(\dfrac{C}{2}\right) \left[\cos \left(\dfrac{A - B}{2}\right) - \sin \left(\dfrac{C}{2}\right)\right]
\left[\text{Note: In } \triangle ABC, \; A + B + C = \pi \implies \dfrac{C}{2} = \dfrac{\pi}{2} - \left(\dfrac{A + B}{2}\right) \right.
\left. \therefore \; \sin \left(\dfrac{C}{2}\right) = \sin \left[\dfrac{\pi}{2} - \left(\dfrac{A + B}{2}\right)\right] = \cos \left(\dfrac{A + B}{2}\right) \right]
\therefore \; \sin^2 \left(\dfrac{A}{2}\right) + \sin^2 \left(\dfrac{B}{2}\right) + \sin^2 \left(\dfrac{C}{2}\right)
= 1 - \sin \left(\dfrac{C}{2}\right) \left[\cos \left(\dfrac{A - B}{2}\right) - \cos \left(\dfrac{A + B}{2}\right)\right]
\left[\text{Note: }\cos \alpha - \cos \beta = 2 \sin \left(\dfrac{\alpha + \beta}{2}\right) \sin \left(\dfrac{\beta - \alpha}{2}\right)\right]
\therefore \; \sin^2 \left(\dfrac{A}{2}\right) + \sin^2 \left(\dfrac{B}{2}\right) + \sin^2 \left(\dfrac{C}{2}\right)
= 1 - \sin \left(\dfrac{C}{2}\right) \times 2 \sin \left(\dfrac{A - B + A + B}{4}\right) \sin \left(\dfrac{A - B - A + B}{4}\right)
= 1 - 2 \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right) \;\;\; \cdots \; (3)
\therefore \; We have from equations (2) and (3),
\begin{aligned}
LHS & = \dfrac{1}{r} \left[1 - 2 \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right)\right] \\\\
& \left[\text{Note: In-radius } = r = 4 R \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right) \right. \\
& \left. \implies \dfrac{r}{2 R} = 2 \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right) \right] \\\\
& = \dfrac{1}{r} \left[1 - \dfrac{r}{2 R}\right] \\\\
& = \dfrac{1}{r} - \dfrac{1}{2 R} = RHS
\end{aligned}
Hence proved.