Properties of Triangles

In a $\triangle ABC$, prove that $\;$ $\left(r_1 + r_2\right) \tan \left(\dfrac{C}{2}\right) = \left(r_3 - r\right) \cot \left(\dfrac{C}{2}\right) = c$


Escribed radius $= r_1 = \dfrac{\Delta}{s - a}$

Escribed radius $= r_2 = \dfrac{\Delta}{s - b}$

$\tan \left(\dfrac{C}{2}\right) = \dfrac{\Delta}{s \left(s - c\right)}$

$\Delta = \sqrt{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}$ $\;$ is the area of $\triangle ABC$

$\implies$ $\Delta^2 = s \left(s - a\right) \left(s - b\right) \left(s - c\right)$

$s = \dfrac{a + b + c}{2}$ $\;$ is the semi-perimeter of $\triangle ABC$

$\implies$ $2 s = a + b + c$

$\begin{aligned} \therefore \; \left(r_1 + r_2\right) \tan \left(\dfrac{C}{2}\right) & = \left[\dfrac{\Delta}{s - a} + \dfrac{\Delta}{s - b}\right] \times \dfrac{\Delta}{s \left(s - c\right)} \\\\ & = \Delta^2 \times \left[\dfrac{s - b + s - a}{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}\right] \\\\ & = 2 s - a - b \\\\ & = a + b + c - a - b = c \;\;\; \cdots \; (1) \end{aligned}$

Escribed radius $= r_3 = s \tan \left(\dfrac{C}{2}\right)$

In-radius $= r = \left(s - c\right) \tan \left(\dfrac{C}{2}\right)$

$\begin{aligned} \therefore \; \left(r_3 - r\right) \cot \left(\dfrac{C}{2}\right) & = r_3 \cot \left(\dfrac{C}{2}\right) - r \cot \left(\dfrac{C}{2}\right) \\\\ & = s \tan \left(\dfrac{C}{2}\right) \times \cot \left(\dfrac{C}{2}\right) - \left(s - c\right) \tan \left(\dfrac{C}{2}\right) \times \cot \left(\dfrac{C}{2}\right) \\\\ & = s - \left(s - c\right) = c \;\;\; \cdots \; (2) \end{aligned}$

$\therefore \;$ We have from equations $(1)$ and $(2)$

$\left(r_1 + r_2\right) \tan \left(\dfrac{C}{2}\right) = \left(r_3 - r\right) \cot \left(\dfrac{C}{2}\right) = c$

Hence proved.