Properties of Triangles

In a $\triangle ABC$, prove that $\;$ $\dfrac{r \; r_1}{r_2 \; r_3} = \tan^2 \left(\dfrac{A}{2}\right)$


Inradius $= r = 4 R \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right)$

Escribed radius $= r_1 = 4 R \sin \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right)$

Escribed radius $= r_2 = 4 R \sin \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right) \cos \left(\dfrac{A}{2}\right)$

Escribed radius $= r_3 = 4 R \sin \left(\dfrac{C}{2}\right) \cos \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B}{2}\right)$

where $\;$ $R$ $\;$ is the circumradius of $\triangle ABC$.

Now,

$\begin{aligned} rr_1 & = 4 R \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right) \times 4 R \sin \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right) \\\\ & = 4 R^2 \sin^2 \left(\dfrac{A}{2}\right) \times 2 \sin \left(\dfrac{B}{2}\right) \cos \left(\dfrac{B}{2}\right) \times 2 \sin \left(\dfrac{C}{2}\right) \cos \left(\dfrac{C}{2}\right) \\\\ & \left[\text{Note: }\sin \theta = 2 \sin \left(\dfrac{\theta}{2}\right) \cos \left(\dfrac{\theta}{2}\right)\right] \\\\ & = 4 R^2 \sin^2 \left(\dfrac{A}{2}\right) \sin B \sin C \;\;\; \cdots \; (1a) \end{aligned}$

$\begin{aligned} r_2 r_3 & = 4 R \sin \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right) \cos \left(\dfrac{A}{2}\right) \times 4 R \sin \left(\dfrac{C}{2}\right) \cos \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B}{2}\right) \\\\ & = 4 R^2 \cos^2 \left(\dfrac{A}{2}\right) \times 2 \sin \left(\dfrac{B}{2}\right) \cos \left(\dfrac{B}{2}\right) \times 2 \sin \left(\dfrac{C}{2}\right) \cos \left(\dfrac{C}{2}\right) \\\\ & = 4 R^2 \cos^2 \left(\dfrac{A}{2}\right) \sin B \sin C \;\;\; \cdots \; (1b) \end{aligned}$

$\therefore \;$ We have from equations $(1a)$ and $(1b)$,

$\begin{aligned} LHS = \dfrac{r r_1}{r_2 r_3} & = \dfrac{4 R^2 \sin^2 \left(\dfrac{A}{2}\right) \sin B \sin C}{4 R^2 \cos^2 \left(\dfrac{A}{2}\right) \sin B \sin C} \\\\ & = \dfrac{\sin^2 \left(\dfrac{A}{2}\right)}{\cos^2 \left(\dfrac{A}{2}\right)} \\\\ & = \tan^2 \left(\dfrac{A}{2}\right) = RHS \end{aligned}$

Hence proved.