Properties of Triangles

In a $\triangle ABC$, prove that $\;$ $\dfrac{1}{r_1} + \dfrac{1}{r_2} + \dfrac{1}{r_3} - \dfrac{1}{r} = 0$


Escribed radius $\;$ $r_1 = \dfrac{\Delta}{s - a}$

Escribed radius $\;$ $r_2 = \dfrac{\Delta}{s - b}$

Escribed radius $\;$ $r_3 = \dfrac{\Delta}{s - c}$

In-radius $\;$ $r = \dfrac{\Delta}{s}$

where $\;$ $\Delta$ $\;$ is the area of $\triangle ABC$

and $\;$ $s = \dfrac{a + b + c}{2}$ $\;$ is the semi-perimeter of $\triangle ABC$

$\implies$ $2 s = a + b + c$

$\begin{aligned} LHS & = \dfrac{1}{r_1} + \dfrac{1}{r_2} + \dfrac{1}{r_3} - \dfrac{1}{r} \\\\ & = \dfrac{s - a}{\Delta} + \dfrac{s - b}{\Delta} + \dfrac{s - c}{\Delta} - \dfrac{s}{\Delta} \\\\ & = \dfrac{1}{\Delta} \left[s - a + s - b + s - c - s\right] \\\\ & = \dfrac{1}{\Delta} \left[2 s - \left(a + b + c\right)\right] \\\\ & = \dfrac{1}{\Delta} \left[\left(a + b + c\right) - \left(a + b + c\right)\right] \\\\ & = 0 = RHS \end{aligned}$

Hence proved.