Properties of Triangles

The lengths of two sides of a triangle are $1$ and $\sqrt{2}$ units respectively and the angle opposite the shorter side is $30^\circ$. Prove that there are two triangles satisfying these conditions, find their angles and show that their areas are in the ratio $\sqrt{3} + 1 : \sqrt{3} - 1$


Let the sides of the triangle be $\;$ $a = 1$ unit, $\;$ $b = \sqrt{2}$ units

Angle opposite shorter side is $\;$ $A = 30^\circ$

Now, $\;$ $b \sin A = \sqrt{2} \times \sin \left(30^\circ\right) = \dfrac{\sqrt{2}}{2} = \dfrac{1}{\sqrt{2}} < a$

$\implies$ There are two values of $B$, $\;$ $0^\circ < B < 90^\circ$ (first quadrant) and $90^\circ < B < 180^\circ$ (second quadrant)

By sine rule in $\triangle ABC$, $\;$ $\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C}$

$\implies$ $\sin B = \dfrac{b \sin A}{a} = \dfrac{\sqrt{2} \times \sin \left(30^\circ\right)}{1} = \dfrac{\sqrt{2}}{2} = \dfrac{1}{\sqrt{2}}$

$\implies$ $B = \sin^{-1} \left(\dfrac{1}{\sqrt{2}}\right)$

i.e. $\;$ $B = 45^\circ$ $\;$ or $\;$ $B = 180^\circ - 45^\circ = 135^\circ$

Now, in $\triangle ABC$, $A + B + C = 180^\circ$ $\implies$ $C = 180^\circ - \left(A + B\right)$

When $\;$ $B = 45^\circ$, $\;$ $C = 180^\circ - \left(30^\circ + 45^\circ\right) = 105^\circ$

When $\;$ $B = 135^\circ$, $\;$ $C = 180^\circ - \left(30^\circ + 135^\circ\right) = 15^\circ$

When $\;$ $a = 1$, $\;$ $b = \sqrt{2}$, $\;$ $A = 30^\circ$, $\;$ $B_1 = 45^\circ$, $\;$ $C_1 = 105^\circ$

Area of $\triangle A B_1 C_1$ $= \Delta_1 = \dfrac{1}{2} a \; b \sin C_1$

i.e. $\;$ $\Delta_1 = \dfrac{1}{2} \times 1 \times \sqrt{2} \times \sin \left(105^\circ\right)$

i.e. $\;$ $\Delta_1 = \dfrac{\sqrt{2}}{2} \times \dfrac{\left(\sqrt{3} + 1\right)}{2 \sqrt{2}}$

i.e. $\;$ $\Delta_1 = \dfrac{\sqrt{3} + 1}{4}$

When $\;$ $a = 1$, $\;$ $b = \sqrt{2}$, $\;$ $A = 30^\circ$, $\;$ $B_2 = 135^\circ$, $\;$ $C_2 = 15^\circ$

Area of $\triangle A B_2 C_2$ $= \Delta_2 = \dfrac{1}{2} a \; b \sin C_2$

i.e. $\;$ $\Delta_2 = \dfrac{1}{2} \times 1 \times \sqrt{2} \times \sin \left(15^\circ\right)$

i.e. $\;$ $\Delta_2 = \dfrac{\sqrt{2}}{2} \times \dfrac{\left(\sqrt{3} - 1\right)}{2 \sqrt{2}}$

i.e. $\;$ $\Delta_2 = \dfrac{\sqrt{3} - 1}{4}$

$\therefore \;$ $\Delta_1 : \Delta_2 = \dfrac{\sqrt{3} + 1}{4} : \dfrac{\sqrt{3} - 1}{4}$

i.e. $\;$ $\Delta_1 : \Delta_2 = \sqrt{3} + 1 : \sqrt{3} - 1$