From Exam Papers

Arithmetic Progression

The $4^{th}$ and the $15^{th}$ terms of an A.P are $22$ and $66$ respectively. Find the first term and the sum of the first $11$ terms.


Given: $4^{th}$ term of A.P $= t_4 = 22$

$15^{th}$ term of A.P $= t_{15} = 66$

$n^{th}$ term of A.P $= t_n = a + \left(n - 1\right)d$

where $a = $ first term of A.P; $\;$ $d = $ common difference of A.P

$\therefore \;$ Fourth term $= t_4 = a + 3d = 22$ $\;\;\; \cdots \; (1a)$

Fifteenth term $= t_{15} = a + 14 d = 66$ $\;\;\; \cdots \; (1b)$

Subtracting equations $(1a)$ and $(1b)$ we have,

$11 d = 44$ $\implies$ $d = 4$

Substituting the value of $d$ in equation $(1a)$ we have,

$a + 3 \times 4 = 22$ $\implies$ $a = 10$

$\therefore \;$ The first term of the A.P $= a = 10$

Now, sum of $n$ terms of A.P $= S_n = \dfrac{n}{2} \left[2a + \left(n - 1\right)d\right]$

$\therefore \;$ Sum of $11$ terms of A.P $= S_{11} = \dfrac{11}{2} \left[2 \times 10 + \left(11 - 1\right) \times 4\right]$

i.e. $\;$ $S_{11} = \dfrac{11}{2} \times (20 + 40) = 330$