Section Formula

The line segment joining $A \left(-1, \dfrac{5}{3}\right)$ and $B \left(a, 5\right)$ is divided internally in the ratio $1 : 3$ at $P$, the point where the line segment intersects Y axis. Calculate the value of '$a$' and the coordinates of $P$.


Let $\;$ $A \left(-1, \dfrac{5}{3}\right) \equiv \left(x_1, y_1\right)$; $\;$ $B \left(a, 5\right) \equiv \left(x_2, y_2\right)$

Let $P$ divide the line segment $AB$ internally in the ratio $m:n$ $\;$ i.e. $\;$ $1 : 3$

Let the coordinates of point $P$ be $\left(0,y\right)$ $\;\;$ [$\because \; P \;$ lies on the Y axis]

Then, by section formula, $\;$ $0 = \dfrac{m x_1 + n x_2}{m + n}$

i.e. $\;$ $0 = \dfrac{1 \times \left(-1\right) + 3 \times a}{1 + 3}$

i.e. $\;$ $-1 + 3a = 0$ $\implies$ $a = \dfrac{1}{3}$

and, $\;$ $y = \dfrac{m y_1 + n y_2}{m + n}$

i.e. $\;$ $y = \dfrac{1 \times \dfrac{5}{3} + 3 \times 5}{1 + 3}$

i.e. $\;$ $y = \dfrac{\dfrac{5}{3} + 15}{4} = \dfrac{50}{12} = \dfrac{25}{6}$

$\therefore \;$ The coordinates of point $P$ are $\left(0, \dfrac{25}{6}\right)$

Equation of a Line

$P$, $Q$ and $R$ have coordinates $\left(-2,1\right)$, $\left(2,2\right)$ and $\left(6,-2\right)$ respectively. Find: the gradient of $QR$, equation of $QR$ and the equation of a line through $P$ perpendicular to $QR$.


Given: $P \left(x_1, y_1\right) = \left(-2, 1\right)$; $\;$ $Q \left(x_2, y_2\right) = \left(2,2\right)$; $\;$ $R \left(x_3, y_3\right) = \left(6, -2\right)$

Gradient of $QR = m_1 = \dfrac{y_3 - y_2}{x_3 - x_2} = \dfrac{-2 - 2}{6 -2} = \dfrac{-4}{4} = -1$

Equation of $QR$: $\;$ $y - y_2 = m_1 \left(x - x_2\right)$

i.e. $\;$ $y - 2 = -1 \left(x - 2\right)$

i.e. $\;$ $y - 2 = -x + 2$

i.e. $\;$ $x + y - 4 = 0$

Slope of line perpendicular to $QR = m_2 = - \dfrac{1}{m_1} = 1$

$\therefore \;$ Equation of line perpendicular to $QR$ and passing through $P$ is

$y - y_1 = m_2 \left(x - x_1\right)$

i.e. $\;$ $y - 1 = 1 \left(x + 2\right)$

i.e. $\;$ $x - y + 3 = 0$

Ratio and Proportion

If $\;$ $\dfrac{x^2 + x + 1}{y^2 + y + 1} = \dfrac{x^2 - x + 1}{y^2 - y + 1}$, $\;$ then show that $\;$ $xy = 1$.


Given: $\;$ $\dfrac{x^2 + x + 1}{y^2 + y +1} = \dfrac{x^2 - x + 1}{y^2 - y + 1}$

i.e. $\;$ $\dfrac{x^2 + x + 1}{x^2 - x + 1} = \dfrac{y^2 + y + 1}{y^2 - y + 1}$

By componendo-dividendo we have,

$\dfrac{\left(x^2 + x + 1\right) + \left(x^2 - x + 1\right)}{\left(x^2 + x + 1\right)- \left(x^2 - x + 1\right)} = \dfrac{\left(y^2 + y + 1\right) + \left(y^2 - y + 1\right)}{\left(y^2 + y + 1\right)- \left(y^2 - y + 1\right)}$

i.e. $\;$ $\dfrac{2 x^2 + 2}{2x} = \dfrac{2 y^2 + 2}{2 y}$

i.e. $\;$ $\dfrac{x^2 + 1}{x} = \dfrac{y^2 + 1}{y}$

i.e. $\;$ $x^2 y + y = y^2 x + x$

i.e. $\;$ $x^2 y - y^2 x = x - y$

i.e. $\;$ $xy \left(x - y\right) = x - y$

i.e. $\;$ $xy = 1$ $\;$ provided $\;$ $x - y \neq 0$ $\;$ i.e. $\;$ $x \neq y$

Hence proved.

Mensuration

A spherical cannon ball of diameter $28 \; cm$ is melted and cast into a right circular cone with base diameter $35 \; cm$. Find the height of the cone, correct to one decimal place.


Diameter of spherical cannon ball $= 28 \; cm$

$\therefore \;$ Radius of spherical cannon ball $= r = 14 \; cm$

Base diameter of the right circular cone $= 35 \; cm$

$\therefore \;$ Base radius of the right circular cone $= R = 17.5 \; cm$

Let the height of he cone be $= H$

$\because \;$ The spherical cannon ball is melted and recast into a right circular cone,

Volume of sphere $=$ Volume of right circular cone

i.e. $\;$ $\dfrac{4}{3} \pi r^3 = \dfrac{1}{3} \pi R^2 H$

$\implies$ $H = \dfrac{4 r^3}{R^2} = \dfrac{4 \times 14^3}{17.5^2} = 35.84$

$\therefore \;$ Height of cone $= 35.8 \; cm$ $\;$ (correct to one decimal place)

From Exam Papers

Geometric Progression

How many terms of the G.P $\;$ $1+3+3^2+ \cdots$ $\;$ must be taken to make the sum $3280$?


Let the required number of terms of G.P $= n$

Sum of $n$ terms of G.P $= S_n = \dfrac{a \left(r^n - 1\right)}{r - 1}$ $\;$ when $\;$ $r > 1$

where $\;$ $a = $ first term of G.P and $\;$ $r =$ is its common ratio

Here, $\;$ $a = 1$ $\;$ and $r = 3$

Given: Sum of $n$ terms of G.P $= 3280$

i.e. $\;$ $\dfrac{1 \left(3^n - 1\right)}{3 - 1} = 3280$

i.e. $\;$ $\dfrac{3^n - 1}{2} = 3280$

i.e. $\;$ $3^n - 1 = 6560$

i.e. $\;$ $3^n = 6561 = 3^8$ $\implies$ $n = 8$

i.e. $\;$ Sum of first $8$ terms of the given G.P $= 3280$

From Exam Papers

Matrices

Given: $\;$ $\begin{bmatrix} 3 & -2 \\ -4 & 4 \end{bmatrix} \begin{bmatrix} 2x \\ 1 \end{bmatrix} + 2 \begin{bmatrix} -4 \\ 5 \end{bmatrix} = \begin{bmatrix} 8 \\ 4y \end{bmatrix}$, find the value of $x$ and $y$.


$\begin{bmatrix} 3 & -2 \\ -4 & 4 \end{bmatrix} \begin{bmatrix} 2x \\ 1 \end{bmatrix} + 2 \begin{bmatrix} -4 \\ 5 \end{bmatrix} = \begin{bmatrix} 8 \\ 4y \end{bmatrix}$

i.e. $\;$ $\begin{bmatrix} 6x - 2 \\ -8x + 4 \end{bmatrix} + \begin{bmatrix} -8 \\ 10 \end{bmatrix} = \begin{bmatrix} 8 \\ 4y \end{bmatrix}$

i.e. $\;$ $\begin{bmatrix} 6x - 10 \\ -8x + 14 \end{bmatrix} = \begin{bmatrix} 8 \\ 4y \end{bmatrix}$

When two matrices are equal, their corresponding elements are equal.

i.e. $\;$ $6x - 10 = 8$ $\implies$ $6x = 18$ $\implies$ $x = 3$

and, $\;$ $-8x + 14 = 4y$

i.e. $\;$ $-8 \times 3 + 14 = 4y$ $\implies$ $-10 = 4y$ $\implies$ $y = - \dfrac{5}{2}$

$\therefore \;$ $x = 3$, $\;$ $y = - \dfrac{5}{2}$

From Exam Papers

Trigonometry

Prove the identity $\;$ $\dfrac{\sin^3 A - \cos^3 A}{1 + \sin A \cos A} = \sin A - \cos A$


$\begin{aligned} LHS & = \dfrac{\sin^3 A - \cos^3 A}{1 + \sin A\cos A} \\\\ & \left[\text{Note: } a^3 - b^3 = \left(a - b\right) \left(a^2 + ab + b^2\right)\right] \\\\ & = \dfrac{\left(\sin A - \cos A\right) \left(\sin^2 A + \sin A \cos A + \cos^2 A\right)}{1 + \sin A \cos A} \\\\ & \left[\text{Note: }\sin^2 A + \cos^2 A = 1\right] \\\\ & = \dfrac{\left(\sin A - \cos A\right) \left(1 + \sin A \cos A\right)}{1 + \sin A \cos A} \\\\ & = \sin A - \cos A = RHS \end{aligned}$

Hence proved.

From Exam Papers

Quadratic Equations

Solve for $x$ giving the answer correct to two significant figures: $\;$ $x^2 - 3x - 9 = 0$


Given quadratic equation: $\;$ $x^2 - 3x - 9 = 0$

Comparing with the standard equation $\;$ $ax^2 + bx + c = 0$ gives

$a = 1$, $\;$ $b = - 3$, $\;$ $c = -9$

By quadratic formula, $\;$ $x = \dfrac{- b \pm \sqrt{b^2 - 4a c}}{2 a}$

$\begin{aligned} i.e. \; \; x & = \dfrac{3 \pm \sqrt{\left(-3\right)^2 - 4 \times 1 \times \left(-9\right)}}{2 \times 1} \\\\ & = \dfrac{3 \pm \sqrt{45}}{2} \\\\ & = \dfrac{3 \pm 6.7082}{2} \\\\ & = \dfrac{9.7082}{2} \; \; or \; \; -\dfrac{3.7082}{2} \\\\ & = 4.8541 \;\; or \; \; -1.8541 \end{aligned}$

i.e. $\;$ $x = 4.9$ $\;$ or $\;$ $x = -1.9$ $\;$ [correct to 2 significant figures]

From Exam Papers

Remainder Theorem

Using remainder theorem show that $\left(2x + 1\right)$ is a factor of the polynomial $p \left(x\right) = 4x^3 + 4x^2 - x - 1$. Hence factorize the polynomial.


Given: $p \left(x\right) = 4x^3 + 4 x^2 - x -1$

Now, $\;$ $2x + 1 =0$ $\implies$ $x = - \dfrac{1}{2}$

Remainder $=$ Value of $p \left(x\right)$ at $x = - \dfrac{1}{2}$

$\begin{aligned} p \left(- \dfrac{1}{2}\right) & = 4 \left(- \dfrac{1}{2}\right)^3 + 4 \left(- \dfrac{1}{2}\right)^2 - \left(- \dfrac{1}{2}\right) - 1 \\\\ & = - \dfrac{1}{2} + 1 + \dfrac{1}{2} - 1 \\\\ & = 0 \end{aligned}$

$\implies$ $\left(2x + 1\right)$ is a factor of $p \left(x\right)$

Now,

$\begin{array}{lllll} 2x + 1 & ) & 4x^3 + 4x^2 - x - 1 & ( & 2x^2 + x - 1 \\ & & 4x^3 + 2x^2 & & \\ & & - - - - - - - - - - - - & & \\ & & \ \ \ \ \ \ \ \ 2x^2 - x & & \\ & & \ \ \ \ \ \ \ \ 2x^2 + x & & \\ & & - - - - - - - - - - - - & & \\ & & \ \ \ \ \ \ \ \ \ \ \ \ \ \ -2x - 1 & & \\ & & \ \ \ \ \ \ \ \ \ \ \ \ \ \ -2x - 1 & & \\ & & - - - - - - - - - - - - & & \\ & & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \end{array}$

$\begin{aligned} \therefore \; 4 x^3 + 4 x^2 - x - 1 & = \left(2x + 1\right) \left(2x^2 + x -1\right) \\\\ & = \left(2x + 1\right) \left(2x^2 + 2 x - x - 1\right) \\\\ & = \left(2x + 1\right) \left[2 x \left(x + 1\right) - 1 \left(x + 1\right)\right] \\\\ & = \left(2x + 1\right) \left(2x - 1\right) \left(x + 1\right) \end{aligned}$

From Exam Papers

Arithmetic Progression

The $4^{th}$ and the $15^{th}$ terms of an A.P are $22$ and $66$ respectively. Find the first term and the sum of the first $11$ terms.


Given: $4^{th}$ term of A.P $= t_4 = 22$

$15^{th}$ term of A.P $= t_{15} = 66$

$n^{th}$ term of A.P $= t_n = a + \left(n - 1\right)d$

where $a = $ first term of A.P; $\;$ $d = $ common difference of A.P

$\therefore \;$ Fourth term $= t_4 = a + 3d = 22$ $\;\;\; \cdots \; (1a)$

Fifteenth term $= t_{15} = a + 14 d = 66$ $\;\;\; \cdots \; (1b)$

Subtracting equations $(1a)$ and $(1b)$ we have,

$11 d = 44$ $\implies$ $d = 4$

Substituting the value of $d$ in equation $(1a)$ we have,

$a + 3 \times 4 = 22$ $\implies$ $a = 10$

$\therefore \;$ The first term of the A.P $= a = 10$

Now, sum of $n$ terms of A.P $= S_n = \dfrac{n}{2} \left[2a + \left(n - 1\right)d\right]$

$\therefore \;$ Sum of $11$ terms of A.P $= S_{11} = \dfrac{11}{2} \left[2 \times 10 + \left(11 - 1\right) \times 4\right]$

i.e. $\;$ $S_{11} = \dfrac{11}{2} \times (20 + 40) = 330$

Heights and Distances

A building and a statue are in opposite side of a street from each other $35 \; m$ apart. From a point on the roof of the building, the angle of elevation of the top of statue is $24^\circ$ and the angle of depression of the base of the statue is $34^\circ$. Find the height of the statue. Give your answer correct to two decimal places. [Given: $\tan 24^\circ = 0.4452$, $\tan 34^\circ = 0.6745$]


$AB =$ Building

$ST =$ Statue

$AS = 35 \; m = $ Distance between the building and the statue

Draw $BO \perp ST$.

Then, $\;$ $AB = SO$, $\;$ $AS = BO = 35 \; m$

In $\triangle ABS$, $\;$ $\dfrac{AB}{AS} = \tan 34^\circ$

$\implies$ $AB = AS \tan 34^\circ = 35 \times 0.6745 = 23.6075 \; m$

i.e. $\;$ $SO = 23.6075 \; m$

In $\triangle BTO$, $\;$ $\dfrac{OT}{BO} = \tan 24^\circ$

$\implies$ $OT = BO \tan 24^\circ = 35 \times 0.4452 = 15.582 \; m$

Now, $\;$ $ST = SO + OT = 23.6075 + 15.582 = 39.1895 \; m$

$\therefore \;$ The height of the statue $= 39.19 \; m$ (to 2 decimal places)

Heights and Distances

An airplane is flying parallel to the Earth’s surface at a speed of $175 \; m/s$ and at a height of $600 \; m$. The angle of elevation of the airplane from a point on the Earth’s surface is $37^\circ$. After what period of time does the angle of elevation increase to $53^\circ$? Give your answer correct to two decimal places. [Given: $\tan 53^\circ = 1.3270$, $\tan 37^\circ = 0.7536$]


$A_1 =$ Initial position of the airplane from point $O$

$A_2 =$ Final position of the airplane from point $O$

$A_1 P = A_2 Q = 600 \; m =$ Height of the airplane

In $\triangle OA_1P$, $\;$ $\dfrac{A_1P}{OP} = \tan 37^\circ$

$\implies$ $OP = \dfrac{A_1 P}{\tan 37^\circ} = \dfrac{600}{0.7536} = 796.1783 \; m$

In $\triangle OA_2Q$, $\;$ $\dfrac{A_2Q}{OQ} = \tan 53^\circ$

$\implies$ $OQ = \dfrac{A_2 Q}{\tan 53^\circ} = \dfrac{600}{1.3270} = 452.1477 \; m$

Now, $\;$ $A_1 A_2 = OP - OQ = 796.1783 - 452.1477 = 344.0306 \; m$

Given: Speed of plane $= 175 \; m/s$

i.e. $\;$ a distance of $175 \; m$ is traveled in $1 \; s$

$\therefore \;$ a distance of $344.0306 \; m$ is traveled in $\dfrac{344.0306}{175} = 1.9659 \; s$

$\therefore \;$ The time taken for the plane to go from $A_1$ to $A_2$ is $1.97 \; s$ (to 2 decimal places)

Heights and Distances

Two persons are standing '$x$' meter apart from each other. The height of the first person is double that of the other. If from the middle point of the line joining their feet, an observer finds the angular elevations of their tops to be complementary, find the height of the shorter person.


$P_1, \; P_2 =$ Two persons standing at $O$ and $Q$ respectively

$OP_1 =$ Height of $P_1 = 2h$ meter

$OP_2 =$ Height of $P_2 = h$ meter

$M =$ Midpoint between $O$ and $Q$

Let $\;$ $\angle P_1MO = \theta$

Then, $\;$ $\angle P_2MQ = 90 - \theta$

$OQ =$ Distance between the two people $= x$ meter

In $\triangle MP_2Q$, $\;$ $\dfrac{P_2Q}{MQ} = \tan \left(90 - \theta\right) = \cot \theta$

i.e. $\;$ $\cot \theta = \dfrac{h}{x / 2}$ $\;\;\; \cdots \; (1)$

In $\triangle MPO$, $\;$ $\dfrac{PO}{OM} = \tan \theta$

i.e. $\;$ $\tan \theta = \dfrac{2h}{x/2}$ $\;\;\; \cdots \; (2)$

Now, $\;$ $\tan \theta \times \cot \theta = 1$ $\;\;\; \cdots \; (3)$

In view of equations $(1)$ and $(2)$ equation $(3)$ becomes

$\dfrac{2h}{x / 2} \times \dfrac{h}{x / 2} = 1$

i.e. $\;$ $8h^2 = x^2$ $\implies$ $h = \dfrac{x}{2 \sqrt{2}}$

$\therefore \;$ The height of the shorter person $= \dfrac{x}{2 \sqrt{2}}$ meter

Heights and Distances

The angle of depression of the top and bottom of a $20 \; m$ tall building from the top of a multi-storied building are $30^\circ$ and $60^\circ$ respectively. Find the height of the multi-storied building and the distance between two buildings.


$AB =$ Multi-storied building

$CD =$ Building of height $20 \; m$

$AC =$ Distance between the two buildings

Draw $DP \perp AB$

Then $\;$ $AP = CD = 20$ and $PD = AC$

In $\triangle BPD$, $\;$ $\dfrac{PB}{PD} = \tan 30^\circ$

$\implies$ $PB = PD \; \tan 30^\circ = \dfrac{PD}{\sqrt{3}} = \dfrac{AC}{\sqrt{3}}$ $\;\;\; \cdots \; (1)$

In $\triangle BAC$, $\;$ $\dfrac{AB}{AC} = \tan 60^\circ$

$\implies$ $AB = AC \; \tan 60^\circ = \sqrt{3} \; AC$ $\;\;\; \cdots \; (2)$

But $\;$ $AB = AP + PB$ $\;\;\; \cdots \; (3)$

$\therefore \;$ In view of equations $(1)$ and $(2)$ equation $(3)$ becomes,

$\sqrt{3} \; AC = 20 + \dfrac{AC}{\sqrt{3}}$

i.e. $\;$ $AC \left(\sqrt{3} - \dfrac{1}{\sqrt{3}}\right) = 20$

i.e. $\;$ $\dfrac{2 \; AC}{\sqrt{3}} = 20$ $\implies$ $AC = 10 \sqrt{3}$

Substituting the value of $AC$ in equation $(2)$ we have,

$AB = 10 \sqrt{3} \times \sqrt{3} = 30$

$\therefore \;$ Height of the multi-storied building $= 30 \; m$

Distance between the two buildings $= 10 \sqrt{3} \; m$

Heights and Distances

Three people $A$, $B$ and $C$ can see each other using telescope across a valley. The horizontal distance between $A$ and $B$ is $8 \; km$ and the horizontal distance between $B$ and $C$ is $12 \; km$. The angle of depression of $B$ from $A$ is $20^\circ$ and the angle of elevation of $C$ from $B$ is $30^\circ$. Calculate the vertical height between $A$, $B$ and $B$, $C$. [Given: $\tan 20^\circ = 0.3640$, $\sqrt{3} = 1.732$]


$A'B = 8 \; km =$ Horizontal distance between $A$ and $B$

$BC' = 12 \; km =$ Horizontal distance between $B$ and $C$

$AA' =$ Vertical height between $A$ and $B$

$CC' =$ Vertical height between $B$ and $C$

In $\triangle AA'B$, $\;$ $\dfrac{AA'}{AB} = \tan 20^\circ$

$\therefore \;$ $AA' = AB \; \tan 20^\circ = 8 \times 0.3640 = 2.912$

In $\triangle CC'B$, $\;$ $\dfrac{CC'}{BC'} = \tan 30^\circ$

$\implies$ $CC' = BC' \; \tan 30^\circ = 12 \times \dfrac{1}{\sqrt{3}} = 4 \sqrt{3} 4 \times 1.732 = 6.925$

$\therefore \;$ Vertical height between $A$ and $B$ $= 2.912 \; km$

Vertical height between $B$ and $C$ $= 6.925 \; km$

Heights and Distances

A man is standing on the deck of a ship, which is $40 \; m$ above water level. He observes the angle of elevation of the top of a hill as $60^\circ$ and the angle of depression of the base of the hill as $30^\circ$. Calculate the distance of the hill from the ship and the height of the hill. [Given: $\sqrt{3} = 1.732$]


$M =$ Position of man on the deck of a ship

$O = $ Position of the ship

$MO = 40 \; m$ Height of the deck of ship above water level

$H =$ Position of the hill

$HH' =$ Height of the hill

$OH =$ Distance of the hill from the ship

Draw $MP \perp HH'$

Then, $\;$ $MP = OH$, $MO = PH = 40 \; m$

In $\triangle OMH$, $\;$ $\dfrac{OM}{OH} = \tan 30^\circ = \dfrac{1}{\sqrt{3}}$

$\implies$ $OH = OM \times \sqrt{3} = 40 \times \sqrt{3} = 40 \times 1.732 = 69.28$

In $\triangle MPH'$, $\;$ $\dfrac{H'P}{MP} = \tan 60^\circ = \sqrt{3}$

$\implies$ $H'P = MP \times \sqrt{3} = 40 \sqrt{3} \times \sqrt{3} = 120$

Now, $HH' = H'P + PH = 120 + 40 = 160$

$\therefore \;$ Distance of the hill from the ship $= 69.28 \; m$

Height of hill $= 160 \; m$

Heights and Distances

From the top of a lighthouse, the angle of depression of two ships on the opposite sides of it are observed to be $30^\circ$ and $60^\circ$. If the height of the lighthouse is $h$ meter and the line joining the ships passes through the foot of the lighthouse, show that the distance between the ships is $\dfrac{4h}{\sqrt{3}} \; m$


$OL =$ Lighthouse of height $h$ meter

$S_1, \; S_2 =$ Position of the two ships on either side of the lighthouse

$S_1S_2 =$ Distance between the two ships

In $\triangle S_1OL$, $\;$ $\dfrac{OL}{S_1O} = \tan 30^\circ$

i.e. $\;$ $\dfrac{h}{S_1O} = \dfrac{1}{\sqrt{3}}$

$\implies$ $S_1O = h \sqrt{3}$

In $\triangle S_2OL$, $\;$ $\dfrac{OL}{OS_2} = \tan 60^\circ$

i.e. $\;$ $\dfrac{h}{OS_2} = \sqrt{3}$

$\implies$ $OS_2 = \dfrac{h}{\sqrt{3}}$

Now, $\;$ $S_1S_2 = S_O + OS_2 = h \sqrt{3} + \dfrac{h}{\sqrt{3}} = \dfrac{4h}{\sqrt{3}}$

$\therefore \;$ Distance between the two ships $= \dfrac{4h}{\sqrt{3}}$ meter

Heights and Distances

The horizontal distance between two buildings is $70 \; m$. The angle of depression of the top of the first building when seen from the top of the second building is $45^\circ$. If the height of the second building is $120 \; m$, find the height of the first building.

$AA'$, $BB'$ are two buildings

$AB = $ distance between the two buildings $= 70 \; m$

$BB' =$ building of height $120 \; m$

Let height of building $AA' = h$ meter

Draw $A'P \perp BB'$.

Then $A'P = AB = 70 \;m$ and $AA' = BP$.

In $\triangle PB'A'$, $\;$ $\dfrac{PB'}{A'P} = \tan 45^\circ = 1$

$\implies$ $PB' = A'P = 70 \; m$

Now, $\;$ $BB' = BP + PB'$

i.e. $\;$ $BB' = AA' + PB'$

$\therefore \;$ $AA' = h = BB' - PB' = 120 - 70 = 50 \; m$

$\therefore \;$ Height of the building $= 50 \; m$

Heights and Distances

A flag pole of height '$h$' meters is on top of a hemispherical dome of radius '$r$' meters. A man standing $7 \; m$ away from the dome sees the top of the pole at an angle of $45^\circ$. On moving $5 \; m$ away from the dome, he sees the bottom of the pole at an angle of $30^\circ$. Find the height of the pole and the radius of the dome. [Given: $\sqrt{3} = 1.732$]


$OO' = OA = r = $ Radius of the dome

$O'P = $ flag pole of height $h$ meter

$B = $ Initial point of observation such that $AB = 7 \; m$

$C = $ Final point of observation such that $BC = 5 \; m$

In $\triangle OO'C$, $\;$ $\dfrac{OO'}{OC} = \tan 30^\circ = \dfrac{1}{\sqrt{3}}$

$\implies$ $OO' = \dfrac{OC}{\sqrt{3}}$

i.e. $\;$ $OO' = \dfrac{OA + AB + BC}{\sqrt{3}} = \dfrac{OA + 12}{\sqrt{3}}$

i.e. $\;$ $OO' \times \sqrt{3} = OA + 12$

i.e. $\;$ $OO' \times \sqrt{3} = OO' + 12$

i.e. $\;$ $\left(\sqrt{3} - 1\right)OO' = 12$

$\implies$ $OO' = \dfrac{12}{0.732} = 16.39$

In $\triangle OPB$, $\;$ $\dfrac{OP}{OB} = \tan 45^\circ = 1$

$\implies$ $OP = OB$

i.e. $\;$ $h + r = r + AB$

i.e. $\;$ $h = AB = 7$

$\therefore \;$ Height of pole $= 7 \; m$

Radius of dome $= 16.39 \; m$

Heights and Distances

A statue $1.6 \; m$ tall stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is $60^\circ$ and from the same point the angle of elevation of the top of the pedestal is $40^\circ$. Find the height of the pedestal. [Given: $\tan 40^\circ = 0.8391, \; \sqrt{3} = 1.732$]


$PS =$ Statue of height $1.6 \; m$

$OP =$ Pedestal

$A =$ Point of observation

In $\triangle SOA$, $\;$ $\dfrac{SO}{OA} = \tan 60^\circ = \sqrt{3}$

$\implies$ $OA = \dfrac{SO}{\sqrt{3}} = \dfrac{SP + PO}{\sqrt{3}}$

i.e. $\;$ $OA = \dfrac{1.6 + PO}{1.732}$ $\;\;\; \cdots \; (1)$

In $\triangle POA$, $\;$ $\dfrac{PO}{OA} = \tan 40^\circ = 0.8391$

$\implies$ $OA = \dfrac{PO}{0.8391}$ $\;\;\; \cdots \; (2)$

$\therefore \;$ We have from equations $(1)$ and $(2)$,

$\dfrac{1.6 + PO}{1.732} = \dfrac{PO}{0.8391}$

i.e. $\;$ $1.34256 + 0.8391 \; PO = 1.732 \; PO$

i.e. $\;$ $0.8929 \; PO = 1.34256$ $\implies$ $PO = 1.5036$

$\therefore \;$ Height of the pedestal $= 1.5 \; m$

Heights and Distances

To a man standing outside his house, the angles of elevation of the top and bottom of a window are $60^\circ$ and $45^\circ$ respectively. If the height of the man is $180 \; cm$ and if he is $5 \; m$ away from the wall, what is the height of the window and the wall? [Given: $\sqrt{3} = 1.732$]


$W_1$: Top of window

$W_2$: Bottom of window

$OW_2$: Wall

$AB$: Man of height $180 \; cm = 1.8 \; m$

$OA$: Distance of man from wall $= 5 \; m$

Draw $BB' \perp O W_2 W_1$

In the figure, $\;$ $AB = OB' = 1.8 \; m$ $\;$ and $\;$ $BB' = OA = 5 \; m$

In $\triangle W_2B'B$, $\;$ $\dfrac{W_2B'}{BB'} = \tan 45^\circ = 1$

$\implies$ $W_2 B' = BB' = 5 \; m$

In $\triangle W_1B'B$, $\;$ $\dfrac{W_1B'}{BB'} = \tan 60^\circ = \sqrt{3}$

$\implies$ $W_1B' = BB' \sqrt{3} = 5 \sqrt{3} \; m$

$\therefore \;$ Height of window $= W_1W_2 = W_1 B' - W_2 B' = 5 \left(\sqrt{3} - 1\right) = 5 \times 0.732 = 3.66 \; m$

Height of wall $= W_2 O = W_2 B' + B'O = 5 + 1.8 = 6.8 \; m$

Heights and Distances

An airplane is flying at a height of $300 \; m$ above the ground. Flying at this height, the angles of depression from the airplane of two points on both banks of a river in opposite directions are $45^\circ$ and $60^\circ$ respectively. Find the width of the river. [Given: $\sqrt{3} = 1.732$]


$B_1$, $B_2$: Points on opposite sides of the river bank

$P$: Position of the airplane

$PO$: Height of plane $= 300 \; m$

$B_1B_2$: Width of the river

In $\triangle POB_1$, $\;$ $\dfrac{PO}{OB_1} = \tan 60^\circ = \sqrt{3}$

$\therefore \;$ $OB_1 = \dfrac{PO}{\sqrt{3}} = \dfrac{300}{\sqrt{3}} = 100 \sqrt{3} = 100 \times 1.732 = 173.2 \; m$

In $\triangle POB_2$, $\;$ $\dfrac{PO}{OB_2} = \tan 45^\circ = 1$

$\implies$ $OB_2 = PO = 300 \; m$

$\therefore \;$ Width of river $= OB_1 + OB_2 = 173.2 + 300 = 473.2 \; m$

Heights and Distances

At a point $A$, $20 \; m$ above the level of water in a lake, the angle of elevation of a cloud is $30^\circ$. The angle of depression of the reflection of the cloud in the lake at $A$ is $60^\circ$. Find the distance of the cloud from $A$.


$OO' =$ Water surface

$A =$ Point of observation at a height of $20 \; m$ above the water surface

$C = $ Position of the cloud

$AC = $ Distance of the cloud from point $A$

$C' =$ Reflection of the cloud in the water

Then, $\;$ $O'C = O'C'$

Draw $AB \perp O'C$

Then, $O'B = OA = 20 \; m$

Let $BC = x$, $\;$ then $O'C' = 20 + x$

In $\triangle ABC'$, $\;$ $\dfrac{BC'}{AB} = \tan 60^\circ = \sqrt{3}$

i.e. $\;$ $AB = \dfrac{BC'}{\sqrt{3}} = \dfrac{BO' + O'C'}{\sqrt{3}} = \dfrac{20 + 20 + x}{\sqrt{3}}$

i.e. $\;$ $AB = \dfrac{40 + x}{\sqrt{3}}$ $\;\;\; \cdots \; (1)$

In $\triangle ABC$, $\;$ $\dfrac{BC}{AB} = \tan 30^\circ = \dfrac{1}{\sqrt{3}}$

i.e. $\;$ $AB = BC \sqrt{3} = x \sqrt{3}$ $\;\;\; \cdots \; (2)$

$\therefore \;$ We have from equations $(1)$ and $(2)$,

$\dfrac{40 + x}{\sqrt{3}} = x \sqrt{3}$

i.e. $\;$ $40 + x = 3 x$ $\implies$ $x = 20$

In $\triangle ABC$, $\;$ $\dfrac{x}{AC} = \sin 30^\circ = \dfrac{1}{2}$

$\implies$ $AC = 2x = 2 \times 20 = 40$

$\therefore \;$ Distance of the cloud from point $A$ $= 40 \; m$

Heights and Distances

The angle of elevation of the top of a building from the foot of a tower is $30^\circ$ and the angle of elevation of the top of the tower from the foot of the building is $60^\circ$. If the tower is $60 \; m$ high, find the height of the building.


$T_1T_2 =$ Tower of height $60 \; m$

$B_1B_2 =$ Building

In $\triangle T_1T_2B_1$, $\;$ $\dfrac{T_1T_2}{T_1B_1} = \tan 60^\circ = \sqrt{3}$

$\implies$ $T_1B_1 = \dfrac{T_1T_2}{\sqrt{3}} = \dfrac{60}{\sqrt{3}}$

In $\triangle B_1B_2T_1$, $\;$ $\dfrac{B_1B_2}{T_1B_1} = \tan 30^\circ = \dfrac{1}{\sqrt{3}}$

$\implies$ $B_1B_2 = \dfrac{T_1B_1}{\sqrt{3}} = \dfrac{60}{\sqrt{3}} \times \dfrac{1}{\sqrt{3}} = 20$

$\therefore \;$ Height of building $= 20 \; m$

Heights and Distances

The angles of depression of the top and bottom of a tower as seen from the top of a $60 \sqrt{3} \; m$ high cliff are $45^\circ$ and $60^\circ$ respectively. Find the height of the tower.


$OC =$ Cliff of height $60 \sqrt{3} \; m$

$TA =$ Tower

Draw $TP \perp OC$

Then, $\;$ $PO = TA$, $\;$ $PT = OA$

In $\triangle COA$, $\;$ $\dfrac{OC}{OA} = \tan 60^\circ = \sqrt{3}$

$\implies$ $OA = \dfrac{OC}{\sqrt{3}} = \dfrac{60 \sqrt{3}}{\sqrt{3}} = 60 \; m$

$\therefore \;$ $PT = 60 \; m$

In $\triangle CPT$, $\;$ $\dfrac{CP}{PT} = \tan 45^\circ = 1$

$\implies$ $CP = PT = 60 \; m$

Now, $\;$ $PO = OC - CP = 60 \sqrt{3} - 60 = \left(\sqrt{3} - 1\right) \times 60 = 0.732 \times 60 = 43.92$

$\implies$ $TA = 43.92$

$\therefore \;$ Height of tower $= 43.92 \; m$

Heights and Distances

From the top of a $7 \; m$ high building, the angle of elevation of the top of a tower is $60^\circ$ and the angle of depression of the foot of the tower is $30^\circ$. Find the height of the tower.


$O_1B =$ Building of height $7 \; m$

$O_2T =$ Tower

Draw $BP \perp O_2T$

From the figure, $\;$ $O_2P = O_1B = 7 \; m$ and $BP = O_1 O_2$

In $\triangle O_1BO_2$, $\;$ $\dfrac{O_1 B}{O_1 O_2} = \tan 30^\circ = \dfrac{1}{\sqrt{3}}$

$\implies$ $O_1 O_2 = \sqrt{3} \times O_1 B = 7 \sqrt{3} \; m$

$\therefore \;$ $BP = 7 \sqrt{3} \; m$

In $\triangle BPT$, $\;$ $\dfrac{PT}{BP} = \tan 60^\circ = \sqrt{3}$

$\implies$ $PT = BP \sqrt{3} = 7 \sqrt{3} \times \sqrt{3} = 21 \; m$

$\therefore \;$ Height of tower $= O_2P + PT = 7 + 21 = 28 \; m$

Heights and Distances

An airplane when flying at a height of $3125 \; m$ from the ground passes vertically below another plane at an instant when the angles of elevation of the two planes from the same point on the ground are $30^\circ$ and $60^\circ$ respectively. Find the distance between the two planes at that instant.


$P_1, P_2$: Positions of the two planes

$P_1P_2$: Distance between the two planes

$A$: Point of observation

Height of plane $P_1$ above ground $= OP_1 = 3125 \; m$

In $\triangle OP_1A$, $\;$ $\dfrac{OP_1}{OA} = \tan 30^\circ = \dfrac{1}{\sqrt{3}}$

$\implies$ $OA = \sqrt{3} \times OP_1$

In $\triangle OP_2A$, $\;$ $\dfrac{OP_2}{OA} = \tan 60^\circ = \sqrt{3}$

$\implies$ $OP_2 = \sqrt{3} \times OA = \sqrt{3} \times \sqrt{3} \times OP_1 = 3 OP_1 = 3 \times 3125 = 9375 \; m$

$\therefore \;$ $P_1 P_2 = OP_2 - OP_1 = 9375 - 3125 = 6250$

$\therefore \;$ Distance between the two planes $= 6250 \; m$

Heights and Distances

A boy standing on a horizontal plane finds a bird flying at a distance of $100 \; m$ from him at an elevation of $30^\circ$. A girl standing on the roof of $20$ meter high building, finds the angle of elevation of the same bird to be $45^\circ$. Both the boy and the girl are on opposite sides of the bird. Find the distance of bird from the girl.


$X$: Position of bird

$B$: Position of boy

$OH$: Building on whose roof the girl is standing

Height of the building $= OH = 20 \; m$

Distance of the bird from the boy $= BX = 100 \; m$

Distance of the bird from the girl $= HX$

In $\triangle BPX$, $\;$ $\dfrac{PX}{BX} = \sin 30^\circ = \dfrac{1}{2}$

$\implies$ $PX = \dfrac{1}{2} \times BX = \dfrac{1}{2} \times 100 = 50 \; m$

Draw $HQ \perp PX$

Then, $PQ = OH = 20 \; m$

$\therefore \;$ $QX = PX - PQ = 50 - 20 = 30 \; m$

In $\triangle HQX$, $\;$ $\dfrac{QX}{HX} = \sin 45^\circ = \dfrac{1}{\sqrt{2}}$

$\implies$ $HX = \sqrt{2} \times QX = \sqrt{2} \times 30 = 42.42$

$\therefore \;$ Distance of the bird from the girl $= 42.42 \; m$

Heights and Distances

As observed from the top of a $100 \; m$ high light house from the sea-level, the angles of depression of two ships are $30^\circ$ and $45^\circ$. If one ship is exactly behind the other on the same side of the light house, find the distance between the two ships. [Given: $\sqrt{3} = 1.732$]


$OL$: Light house

$S_1, \; S_2$: Two ships, exactly one behind the other, on the same side of the light house

Height of light house $= OL = 100 \; m$

Distance between the two ships $= S_1S_2$

In $\triangle OLS_1$, $\;$ $\dfrac{OL}{OS_1} = \tan 45^\circ = 1$

$\implies$ $OS_1 = OL = 100 \; m$

In $\triangle OLS_2$, $\;$ $\dfrac{OL}{OS_2} = \tan30^\circ = \dfrac{1}{\sqrt{3}}$

$\implies$ $OS_2 = OL \times \sqrt{3} = 100 \times 1.732 = 173.2 \; m$

From the figure, $\;$ $S_1 S_2 = OS_2 - OS_1 = 173.2 - 100 = 73.2 \;m$

$\therefore \;$ Distance between the two ships $= 73.2 \; m$

Heights and Distances

A bird is sitting on the top of a tree, which is 80m high. The angle of elevation of the bird, from a point on the ground is $45^{\circ}$. The bird flies away from the point of observation horizontally and remains at a constant height. After 2 seconds, the angle of elevation of the bird from the point of observation becomes $30^{\circ}$. Find the speed of the bird.


$B_1$: Initial position of the bird

$B_2$: Final position of the bird

$B_1B_2$: Distance the bird flies in 2 seconds

A: Point of observation

From the figure, $OB_1=PB_2 = 80m$

In triangle $OB_1A$,

$\dfrac{OB_1}{OA}=\tan 45^{\circ} = 1$ $\implies$ $OA=OB_1=80$

In triangle $PB_2A$,

$\dfrac{PB_2}{PA}=\tan 30^{\circ} = \dfrac{1}{\sqrt{3}}$ $\implies$ $PA=\sqrt{3}PB_2=80\sqrt{3}$

Now, $PO=PA-OA=80\sqrt{3}-80=58.56$

$\therefore \;$ Distance the bird flies $=B_1B_2=OP=58.56m$

$\therefore \;$ Speed of the bird $= \dfrac{\text{Distance covered by the bird}}{\text{Time taken}} = \dfrac{58.56}{2}=29.28m/s$

Properties of Triangles

In a $\triangle ABC$, prove that $\;$ $\dfrac{r_1}{bc} + \dfrac{r_2}{ca} + \dfrac{r_3}{ab} = \dfrac{1}{r} - \dfrac{1}{2 R}$


Escribed radius $= r_1 = 4 R \sin \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right)$

Escribed radius $= r_2 = 4 R \sin \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right) \cos \left(\dfrac{A}{2}\right)$

Escribed radius $= r_3 = 4 R \sin \left(\dfrac{C}{2}\right) \cos \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B}{2}\right)$

By sine rule, $\;$ $\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2 R$

$\implies$ $a = 2 R \sin A$, $\;$ $b = 2 R \sin B$, $\;$ $c = 2 R \sin C$

where $\;$ $R$ $\;$ is the circumradius of $\triangle ABC$

Now,

$\begin{aligned} \dfrac{r_1}{bc} & = \dfrac{4 R \sin \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right)}{2 R \sin B \times 2 R \sin C} \\\\ & \left[\text{Note: } \sin \theta = 2 \sin \left(\dfrac{\theta}{2}\right) \cos \left(\dfrac{\theta}{2}\right) \right] \\\\ & = \dfrac{\sin \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right)}{R \times 2 \sin \left(\dfrac{B}{2}\right) \cos \left(\dfrac{B}{2}\right) \times 2 \sin \left(\dfrac{C}{2}\right) \cos \left(\dfrac{C}{2}\right)} \\\\ & = \dfrac{\sin \left(\dfrac{A}{2}\right)}{4 R \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right)} \\\\ & = \dfrac{\sin^2 \left(\dfrac{A}{2}\right)}{4 R \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right)} \\\\ & = \dfrac{\sin^2 \left(\dfrac{A}{2}\right)}{r} \;\;\; \cdots \; (1a) \end{aligned}$

Similarly,

$\dfrac{r_2}{ca} = \dfrac{\sin^2 \left(\dfrac{B}{2}\right)}{r}$ $\;\;\; \cdots \; (1b)$ $\;$ and $\;$ $\dfrac{r_3}{ab} = \dfrac{\sin^2 \left(\dfrac{C}{2}\right)}{r}$ $\;\;\; \cdots \; (1c)$

$\therefore \;$ In view of equations $(1a)$, $(1b)$ and $(1c)$, we have

$\begin{aligned} LHS & = \dfrac{r_1}{bc} + \dfrac{r_2}{ca} + \dfrac{r_3}{ab} \\\\ & = \dfrac{1}{r} \left[\sin^2 \left(\dfrac{A}{2}\right) + \sin^2 \left(\dfrac{B}{2}\right) + \sin^2 \left(\dfrac{C}{2}\right)\right] \;\;\; \cdots \; (2) \end{aligned}$

$\left[\text{Note: } \sin^2 \left(\dfrac{\theta}{2}\right) = \dfrac{1 - \cos \theta}{2}\right]$

Now,

$\sin^2 \left(\dfrac{A}{2}\right) + \sin^2 \left(\dfrac{B}{2}\right) + \sin^2 \left(\dfrac{C}{2}\right)$

$= \dfrac{1 - \cos A}{2} + \dfrac{1 - \cos B}{2} + \sin^2 \left(\dfrac{C}{2}\right)$

$= 1 - \dfrac{1}{2} \left[\cos A + \cos B\right] + \sin^2 \left(\dfrac{C}{2}\right)$

$\left[\text{Note: }\cos \alpha + \cos \beta = 2 \cos \left(\dfrac{\alpha + \beta}{2}\right) \cos \left(\dfrac{\alpha - \beta}{2}\right)\right]$

$= 1 - \cos \left(\dfrac{A + B}{2}\right) \cos \left(\dfrac{A - B}{2}\right) + \sin^2 \left(\dfrac{C}{2}\right)$

$\left[\text{Note: In } \triangle ABC, \; A + B + C = \pi \implies \dfrac{A + B}{2} = \dfrac{\pi}{2} - \dfrac{C}{2} \right.$
$\left. \therefore \; \cos \left(\dfrac{A + B}{2}\right) = \cos \left(\dfrac{\pi}{2} - \dfrac{C}{2}\right) = \sin \left(\dfrac{C}{2}\right) \right]$

$\therefore \; \sin^2 \left(\dfrac{A}{2}\right) + \sin^2 \left(\dfrac{B}{2}\right) + \sin^2 \left(\dfrac{C}{2}\right)$

$= 1 - \sin \left(\dfrac{C}{2}\right) \cos \left(\dfrac{A - B}{2}\right) + \sin^2 \left(\dfrac{C}{2}\right)$

$= 1 - \sin \left(\dfrac{C}{2}\right) \left[\cos \left(\dfrac{A - B}{2}\right) - \sin \left(\dfrac{C}{2}\right)\right]$

$\left[\text{Note: In } \triangle ABC, \; A + B + C = \pi \implies \dfrac{C}{2} = \dfrac{\pi}{2} - \left(\dfrac{A + B}{2}\right) \right.$
$\left. \therefore \; \sin \left(\dfrac{C}{2}\right) = \sin \left[\dfrac{\pi}{2} - \left(\dfrac{A + B}{2}\right)\right] = \cos \left(\dfrac{A + B}{2}\right) \right]$

$\therefore \; \sin^2 \left(\dfrac{A}{2}\right) + \sin^2 \left(\dfrac{B}{2}\right) + \sin^2 \left(\dfrac{C}{2}\right)$

$= 1 - \sin \left(\dfrac{C}{2}\right) \left[\cos \left(\dfrac{A - B}{2}\right) - \cos \left(\dfrac{A + B}{2}\right)\right]$

$\left[\text{Note: }\cos \alpha - \cos \beta = 2 \sin \left(\dfrac{\alpha + \beta}{2}\right) \sin \left(\dfrac{\beta - \alpha}{2}\right)\right]$

$\therefore \; \sin^2 \left(\dfrac{A}{2}\right) + \sin^2 \left(\dfrac{B}{2}\right) + \sin^2 \left(\dfrac{C}{2}\right)$

$= 1 - \sin \left(\dfrac{C}{2}\right) \times 2 \sin \left(\dfrac{A - B + A + B}{4}\right) \sin \left(\dfrac{A - B - A + B}{4}\right)$

$= 1 - 2 \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right)$ $\;\;\; \cdots \; (3)$

$\therefore \;$ We have from equations $(2)$ and $(3)$,

$\begin{aligned} LHS & = \dfrac{1}{r} \left[1 - 2 \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right)\right] \\\\ & \left[\text{Note: In-radius } = r = 4 R \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right) \right. \\ & \left. \implies \dfrac{r}{2 R} = 2 \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right) \right] \\\\ & = \dfrac{1}{r} \left[1 - \dfrac{r}{2 R}\right] \\\\ & = \dfrac{1}{r} - \dfrac{1}{2 R} = RHS \end{aligned}$

Hence proved.

Properties of Triangles

In a $\triangle ABC$, prove that $\;$ $\left(r_1 + r_2\right) \tan \left(\dfrac{C}{2}\right) = \left(r_3 - r\right) \cot \left(\dfrac{C}{2}\right) = c$


Escribed radius $= r_1 = \dfrac{\Delta}{s - a}$

Escribed radius $= r_2 = \dfrac{\Delta}{s - b}$

$\tan \left(\dfrac{C}{2}\right) = \dfrac{\Delta}{s \left(s - c\right)}$

$\Delta = \sqrt{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}$ $\;$ is the area of $\triangle ABC$

$\implies$ $\Delta^2 = s \left(s - a\right) \left(s - b\right) \left(s - c\right)$

$s = \dfrac{a + b + c}{2}$ $\;$ is the semi-perimeter of $\triangle ABC$

$\implies$ $2 s = a + b + c$

$\begin{aligned} \therefore \; \left(r_1 + r_2\right) \tan \left(\dfrac{C}{2}\right) & = \left[\dfrac{\Delta}{s - a} + \dfrac{\Delta}{s - b}\right] \times \dfrac{\Delta}{s \left(s - c\right)} \\\\ & = \Delta^2 \times \left[\dfrac{s - b + s - a}{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}\right] \\\\ & = 2 s - a - b \\\\ & = a + b + c - a - b = c \;\;\; \cdots \; (1) \end{aligned}$

Escribed radius $= r_3 = s \tan \left(\dfrac{C}{2}\right)$

In-radius $= r = \left(s - c\right) \tan \left(\dfrac{C}{2}\right)$

$\begin{aligned} \therefore \; \left(r_3 - r\right) \cot \left(\dfrac{C}{2}\right) & = r_3 \cot \left(\dfrac{C}{2}\right) - r \cot \left(\dfrac{C}{2}\right) \\\\ & = s \tan \left(\dfrac{C}{2}\right) \times \cot \left(\dfrac{C}{2}\right) - \left(s - c\right) \tan \left(\dfrac{C}{2}\right) \times \cot \left(\dfrac{C}{2}\right) \\\\ & = s - \left(s - c\right) = c \;\;\; \cdots \; (2) \end{aligned}$

$\therefore \;$ We have from equations $(1)$ and $(2)$

$\left(r_1 + r_2\right) \tan \left(\dfrac{C}{2}\right) = \left(r_3 - r\right) \cot \left(\dfrac{C}{2}\right) = c$

Hence proved.

Properties of Triangles

In a $\triangle ABC$, prove that $\;$ $r r_1 \cot \left(\dfrac{A}{2}\right) = \Delta$


Circumradius $= R = \dfrac{a b c}{4 \Delta}$ $\;$ where $\Delta$ is the area of $\triangle ABC$

i.e. $\;$ $\Delta = \dfrac{a b c}{4 R}$

Inradius $= r = \dfrac{a \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right)}{\cos \left(\dfrac{A}{2}\right)}$

Escribed radius $= r_1 = \dfrac{a \cos \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right)}{\cos \left(\dfrac{A}{2}\right)}$

$\begin{aligned} LHS & = r r_1 \cot \left(\dfrac{A}{2}\right) \\\\ & = \dfrac{a \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right)}{\cos \left(\dfrac{A}{2}\right)} \times \dfrac{a \cos \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right)}{\cos \left(\dfrac{A}{2}\right)} \times \cot \left(\dfrac{A}{2}\right) \\\\ & = \dfrac{a^2 \sin \left(\dfrac{B}{2}\right) \cos \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right) \cos \left(\dfrac{C}{2}\right)}{\cos^2 \left(\dfrac{A}{2}\right)} \times \dfrac{\cos \left(\dfrac{A}{2}\right)}{\sin \left(\dfrac{A}{2}\right)} \\\\ & \left[\text{Note: } \dfrac{\sin \theta}{2} = \sin \left(\dfrac{\theta}{2}\right) \cos \left(\dfrac{\theta}{2}\right)\right] \\\\ & = a^2 \times \dfrac{\sin B}{2} \times \dfrac{\sin C}{2} \times \dfrac{2}{\sin A} \\\\ & \left[\text{Note: By sine rule, } \dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R \right. \\ & \left. \implies \sin A = \dfrac{a}{2 R}, \; \sin B = \dfrac{b}{2 R}, \; \sin C = \dfrac{c}{2 R} \right] \\\\ & = a^2 \times \dfrac{1}{2} \times \dfrac{b}{2 R} \times \dfrac{c}{2 R} \times \dfrac{2 R}{a} \\\\ & = \dfrac{a b c}{4 R} \\\\ & = \Delta = RHS \end{aligned}$

Hence proved.

Properties of Triangles

In a $\triangle ABC$, prove that $\;$ $\dfrac{1}{r^2} + \dfrac{1}{r_1^2} + \dfrac{1}{r_2^2} + \dfrac{1}{r_3^2} = \dfrac{a^2 + b^2 + c^2}{\Delta^2}$


Inradius $= r = \dfrac{\Delta}{s}$

Escribed radius $= r_1 = \dfrac{\Delta}{s - a}$

Escribed radius $= r_2 = \dfrac{\Delta}{s - b}$

Escribed radius $= r_3 = \dfrac{\Delta}{s - c}$

where $\;$ $\Delta = \sqrt{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}$ $\;$ is the area of $\triangle ABC$

i.e. $\;$ $\Delta^2 = s \left(s - a\right) \left(s - b\right) \left(s - c\right)$

and $\;$ $s = \dfrac{a + b + c}{2}$ $\;$ is the semi-perimeter of $\triangle ABC$

i.e. $\;$ $2 s = a + b + c$

Now,

$\begin{aligned} LHS & = \dfrac{1}{r^2} + \dfrac{1}{r_1^2} + \dfrac{1}{r_2^2} + \dfrac{1}{r_3^2} \\\\ & = \dfrac{s^2}{\Delta^2} + \dfrac{\left(s - a\right)^2}{\Delta^2} + \dfrac{\left(s - b\right)^2}{\Delta^2} + \dfrac{\left(s - c\right)^2}{\Delta^2} \\\\ & = \dfrac{s^2 + s^2 - 2 a s + a^2 + s^2 - 2 b s + b^2 + s^2 - 2 c s + c^2}{\Delta^2} \\\\ & = \dfrac{4 s^2 - 2 s \left(a + b + c\right) + a^2 + b^2 + c^2}{\Delta^2} \\\\ & = \dfrac{4 s^2 - 4 s^2 + a^2 + b^2 + c^2}{\Delta^2} \\\\ & = \dfrac{a^2 + b^2 + c^2}{\Delta^2} = RHS \end{aligned}$

Hence proved.

Properties of Triangles

In a $\triangle ABC$, prove that $\;$ $a \left(r r_1 + r_2 r_3\right) = b \left(r r_2 + r_3 r_1\right) = c \left(r r_3 + r_1 r_2\right)$


Inradius $= r = \dfrac{\Delta}{s}$

Escribed radius $= r_1 = \dfrac{\Delta}{s - a}$

Escribed radius $= r_2 = \dfrac{\Delta}{s - b}$

Escribed radius $= r_3 = \dfrac{\Delta}{s - c}$

where $\;$ $\Delta = \sqrt{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}$ $\;$ is the area of $\triangle ABC$

i.e. $\;$ $\Delta^2 = s \left(s - a\right) \left(s - b\right) \left(s - c\right)$

and $\;$ $s = \dfrac{a + b + c}{2}$ $\;$ is the semi-perimeter of $\triangle ABC$

i.e. $\;$ $2 s = a + b + c$

Now,

$\begin{aligned} a \left(r r_1 + r_2 r_3\right) & = a \left[\dfrac{\Delta}{s} \times \dfrac{\Delta}{\left(s - a\right)} + \dfrac{\Delta}{\left(s - b\right)} \times \dfrac{\Delta}{\left(s - c\right)}\right] \\\\ & = \dfrac{a \Delta^2 \left[s^2 - sc - s b + b c + s^2 - s a\right]}{s \left(s - a\right) \left(s - b\right) \left(s - c \right)} \\\\ & = a \left[2 s^2 - s \left(a + b + c\right) + bc\right] \\\\ & = a \left[2 s^2 - 2 s^2 + bc\right] \\\\ & = a b c \;\;\; \cdots \; (1a) \end{aligned}$

$\begin{aligned} b \left(r r_2 + r_3 r_1\right) & = b \left[\dfrac{\Delta}{s} \times \dfrac{\Delta}{\left(s - b\right)} + \dfrac{\Delta}{\left(s - c\right)} \times \dfrac{\Delta}{\left(s - a\right)}\right] \\\\ & = \dfrac{b \Delta^2 \left[s^2 - s a - s c + a c + s^2 - s b\right]}{s \left(s - a\right) \left(s - b\right) \left(s - c \right)} \\\\ & = b \left[2 s^2 - s \left(a + b + c\right) + ac\right] \\\\ & = b \left[2 s^2 - 2 s^2 + ac\right] \\\\ & = a b c \;\;\; \cdots \; (1b) \end{aligned}$

$\begin{aligned} c \left(r r_3 + r_1 r_2\right) & = c \left[\dfrac{\Delta}{s} \times \dfrac{\Delta}{\left(s - c\right)} + \dfrac{\Delta}{\left(s - a\right)} \times \dfrac{\Delta}{\left(s - b\right)}\right] \\\\ & = \dfrac{c \Delta^2 \left[s^2 - s b - s a + a b + s^2 - s c\right]}{s \left(s - a\right) \left(s - b\right) \left(s - c \right)} \\\\ & = c \left[2 s^2 - s \left(a + b + c\right) + ab\right] \\\\ & = c \left[2 s^2 - 2 s^2 + ab\right] \\\\ & = a b c \;\;\; \cdots \; (1c) \end{aligned}$

$\therefore \;$ We have from equations $(1a)$, $(1b)$ and $(1c)$,

$a \left(r r_1 + r_2 r_3\right) = b \left(r r_2 + r_3 r_1\right) = c \left(r r_3 + r_1 r_2\right)$

Hence proved.

Properties of Triangles

In a $\triangle ABC$, prove that $\;$ $\dfrac{r \; r_1}{r_2 \; r_3} = \tan^2 \left(\dfrac{A}{2}\right)$


Inradius $= r = 4 R \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right)$

Escribed radius $= r_1 = 4 R \sin \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right)$

Escribed radius $= r_2 = 4 R \sin \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right) \cos \left(\dfrac{A}{2}\right)$

Escribed radius $= r_3 = 4 R \sin \left(\dfrac{C}{2}\right) \cos \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B}{2}\right)$

where $\;$ $R$ $\;$ is the circumradius of $\triangle ABC$.

Now,

$\begin{aligned} rr_1 & = 4 R \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right) \times 4 R \sin \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right) \\\\ & = 4 R^2 \sin^2 \left(\dfrac{A}{2}\right) \times 2 \sin \left(\dfrac{B}{2}\right) \cos \left(\dfrac{B}{2}\right) \times 2 \sin \left(\dfrac{C}{2}\right) \cos \left(\dfrac{C}{2}\right) \\\\ & \left[\text{Note: }\sin \theta = 2 \sin \left(\dfrac{\theta}{2}\right) \cos \left(\dfrac{\theta}{2}\right)\right] \\\\ & = 4 R^2 \sin^2 \left(\dfrac{A}{2}\right) \sin B \sin C \;\;\; \cdots \; (1a) \end{aligned}$

$\begin{aligned} r_2 r_3 & = 4 R \sin \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right) \cos \left(\dfrac{A}{2}\right) \times 4 R \sin \left(\dfrac{C}{2}\right) \cos \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B}{2}\right) \\\\ & = 4 R^2 \cos^2 \left(\dfrac{A}{2}\right) \times 2 \sin \left(\dfrac{B}{2}\right) \cos \left(\dfrac{B}{2}\right) \times 2 \sin \left(\dfrac{C}{2}\right) \cos \left(\dfrac{C}{2}\right) \\\\ & = 4 R^2 \cos^2 \left(\dfrac{A}{2}\right) \sin B \sin C \;\;\; \cdots \; (1b) \end{aligned}$

$\therefore \;$ We have from equations $(1a)$ and $(1b)$,

$\begin{aligned} LHS = \dfrac{r r_1}{r_2 r_3} & = \dfrac{4 R^2 \sin^2 \left(\dfrac{A}{2}\right) \sin B \sin C}{4 R^2 \cos^2 \left(\dfrac{A}{2}\right) \sin B \sin C} \\\\ & = \dfrac{\sin^2 \left(\dfrac{A}{2}\right)}{\cos^2 \left(\dfrac{A}{2}\right)} \\\\ & = \tan^2 \left(\dfrac{A}{2}\right) = RHS \end{aligned}$

Hence proved.

Properties of Triangles

In a $\triangle ABC$, prove that $\;$ $\Delta = 4 \; R \; r \; \cos \left(\dfrac{A}{2}\right) \; \cos \left(\dfrac{B}{2}\right) \; \cos \left(\dfrac{C}{2}\right)$


In-radius $\;$ $r = 4 R \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right)$

Circumradius $\;$ $R = \dfrac{a \; b \; c}{4 \Delta}$

$\sin A = \dfrac{2 \Delta}{b c}$, $\;$ $\sin B = \dfrac{2 \Delta}{c a}$, $\;$ $\sin C = \dfrac{2 \Delta}{a b}$

where $\;$ $\Delta$ $\;$ is the area of $\triangle ABC$.

$\begin{aligned} RHS & = 4 \; R \; r \; \cos \left(\dfrac{A}{2}\right) \; \cos \left(\dfrac{B}{2}\right) \; \cos \left(\dfrac{C}{2}\right) \\\\ & = 4 R \times 4 R \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right) \times \cos \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right) \\\\ & \left[\text{Note: } \sin \left(\dfrac{\theta}{2}\right) \cos \left(\dfrac{\theta}{2}\right) = \dfrac{\sin \theta}{2}\right] \\\\ & = 16 R^2 \times \dfrac{\sin A}{2} \times \dfrac{\sin B}{2} \times \dfrac{\sin C}{2} \\\\ & = 2 R^2 \sin A \sin B \sin C \\\\ & = 2 \times \left(\dfrac{abc}{4 \Delta}\right)^2 \times \left(\dfrac{2 \Delta}{bc}\right) \times \left(\dfrac{2 \Delta}{ca}\right) \times \left(\dfrac{2 \Delta}{ab}\right) \\\\ & = \dfrac{16 \; \Delta^3 \; a^2 \; b^2 \; c^2}{16 \; \Delta^2 \; a^2 \; b^2 \; c^2} \\\\ & = \Delta = LHS \end{aligned}$

Hence proved.

Properties of Triangles

In a $\triangle ABC$, prove that $\;$ $\dfrac{1}{r_1} + \dfrac{1}{r_2} + \dfrac{1}{r_3} - \dfrac{1}{r} = 0$


Escribed radius $\;$ $r_1 = \dfrac{\Delta}{s - a}$

Escribed radius $\;$ $r_2 = \dfrac{\Delta}{s - b}$

Escribed radius $\;$ $r_3 = \dfrac{\Delta}{s - c}$

In-radius $\;$ $r = \dfrac{\Delta}{s}$

where $\;$ $\Delta$ $\;$ is the area of $\triangle ABC$

and $\;$ $s = \dfrac{a + b + c}{2}$ $\;$ is the semi-perimeter of $\triangle ABC$

$\implies$ $2 s = a + b + c$

$\begin{aligned} LHS & = \dfrac{1}{r_1} + \dfrac{1}{r_2} + \dfrac{1}{r_3} - \dfrac{1}{r} \\\\ & = \dfrac{s - a}{\Delta} + \dfrac{s - b}{\Delta} + \dfrac{s - c}{\Delta} - \dfrac{s}{\Delta} \\\\ & = \dfrac{1}{\Delta} \left[s - a + s - b + s - c - s\right] \\\\ & = \dfrac{1}{\Delta} \left[2 s - \left(a + b + c\right)\right] \\\\ & = \dfrac{1}{\Delta} \left[\left(a + b + c\right) - \left(a + b + c\right)\right] \\\\ & = 0 = RHS \end{aligned}$

Hence proved.

Properties of Triangles

In a $\triangle ABC$, prove that $\;$ $r_1 \cdot r_2 \cdot r_3 = r^3 \cot^2 \left(\dfrac{A}{2}\right) \cot^2 \left(\dfrac{B}{2}\right) \cot^2 \left(\dfrac{C}{2}\right)$ $\;$ where the symbols have their usual meanings.


Escribed radius $\;$ $r_1 = 4 R \sin \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right)$

Escribed radius $\;$ $r_2 = 4 R \sin \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right) \cos \left(\dfrac{A}{2}\right)$

Escribed radius $\;$ $r_3 = 4 R \sin \left(\dfrac{C}{2}\right) \cos \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B}{2}\right)$

Inradius $\;$ $r = 4 R \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right)$

where $\;$ $R$ is the circumradius of $\triangle ABC$.

$\begin{aligned} LHS & = r_1 \cdot r_2 \cdot r_3 \\\\ & = 4 R \sin \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right) \\ & \hspace{1cm} \times 4 R \sin \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right) \cos \left(\dfrac{A}{2}\right) \\ & \hspace{2cm} \times 4 R \sin \left(\dfrac{C}{2}\right) \cos \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B}{2}\right) \\\\ & = 64 R^3 \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right) \cos^2 \left(\dfrac{A}{2}\right) \cos^2 \left(\dfrac{B}{2}\right) \cos^2 \left(\dfrac{C}{2}\right) \\\\ & = \left[4 R \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right)\right]^3 \times \dfrac{\cos^2 \left(\dfrac{A}{2}\right) \cos^2 \left(\dfrac{B}{2}\right) \cos^2 \left(\dfrac{C}{2}\right)}{\sin^2 \left(\dfrac{A}{2}\right) \sin^2 \left(\dfrac{B}{2}\right) \sin^2 \left(\dfrac{C}{2}\right)} \\\\ & = r^3 \cot^2 \left(\dfrac{A}{2}\right) \cot^2 \left(\dfrac{B}{2}\right) \cot^2 \left(\dfrac{C}{2}\right) \\\\ & = RHS \end{aligned}$

Hence proved.

Properties of Triangles

In a $\triangle ABC$, prove that $\;$ $r_1 + r_2 + r_3 - r = 4R$ $\;$ where the symbols have their usual meanings.


Escribed radius $\;$ $r_1 = 4 R \sin \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right)$

Escribed radius $\;$ $r_2 = 4 R \sin \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right) \cos \left(\dfrac{A}{2}\right)$

Escribed radius $\;$ $r_3 = 4 R \sin \left(\dfrac{C}{2}\right) \cos \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B}{2}\right)$

Inradius $\;$ $r = 4 R \sin \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right)$

where $\;$ $R$ is the circumradius of $\triangle ABC$.

$\begin{aligned} LHS & = r_1 + r_2 + r_3 - r \\\\ & = \left(r_1 - r\right) + \left(r_2 + r_3\right) \\\\ & = 4 R \sin \left(\dfrac{A}{2}\right) \left[\cos \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right) - \sin \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right)\right] \\ & \hspace{1cm} + 4 R \cos \left(\dfrac{A}{2}\right) \left[\sin \left(\dfrac{B}{2}\right) \cos \left(\dfrac{C}{2}\right) + \cos \left(\dfrac{B}{2}\right) \sin \left(\dfrac{C}{2}\right)\right] \;\;\; \cdots \; (1) \end{aligned}$

Now, $\;$ $\cos \left(\alpha + \beta\right) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ $\;\;\; \cdots \; (2a)$

$\sin \left(\alpha + \beta\right) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ $\;\;\; \cdots \; (2b)$

In view of equations $(2a)$ and $(2b)$ equation $(1)$ becomes,

$LHS = 4 R \sin \left(\dfrac{A}{2}\right) \cos \left(\dfrac{B + C}{2}\right) + 4 R \cos \left(\dfrac{A}{2}\right) \sin \left(\dfrac{B + C}{2}\right)$ $\;\;\; \cdots \; (3)$

In $\triangle ABC$, $\;$ $A + B + C = \pi$

$\implies$ $B + C = \pi - A$

i.e. $\;$ $\dfrac{B + C}{2} = \dfrac{\pi}{2} - \dfrac{A}{2}$

$\therefore \;$ $\cos \left(\dfrac{B + C}{2}\right) = \cos \left(\dfrac{\pi}{2} - \dfrac{A}{2}\right) = \sin \left(\dfrac{A}{2}\right)$ $\;\;\; \cdots \; (4a)$

Similarly, $\;$ $\sin \left(\dfrac{B + C}{2}\right) = \sin \left(\dfrac{\pi}{2} - \dfrac{A}{2}\right) = \cos \left(\dfrac{A}{2}\right)$ $\;\;\; \cdots \; (4b)$

In view of equations $(4a)$ and $(4b)$ equation $(3)$ becomes,

$\begin{aligned} LHS & = 4 R \sin \left(\dfrac{A}{2}\right) \times \sin \left(\dfrac{A}{2}\right) + 4 R \cos \left(\dfrac{A}{2}\right) \times \cos \left(\dfrac{A}{2}\right) \\\\ & = 4 R \left[\sin^2 \left(\dfrac{A}{2}\right) + \cos^2 \left(\dfrac{A}{2}\right)\right] \\\\ & = 4 R = RHS \end{aligned}$

Hence proved.

Properties of Triangles

In a $\triangle ABC$, if $a = 13$, $b = 4$ and $\cos C = - \dfrac{5}{13}$, find $R$, $r$, $r_1$, $r_2$ and $r_3$.


Given: $\;$ In $\triangle ABC$, $\;$ $a = 13$, $\;$ $b = 4$, $\;$ $\cos C = - \dfrac{5}{13}$

By cosine rule, $\;$ $\cos C = \dfrac{a^2 + b^2 - c^2}{2 a b}$

$\implies$ $c^2 = a^2 + b^2 - 2 a b \cos C$

i.e. $\;$ $c^2 = \left(13\right)^2 + \left(4\right)^2 - 2 \times 13 \times 4 \times \left(- \dfrac{5}{13}\right)$

i.e. $\;$ $c^2 = 169 + 16 + 40 = 225$ $\implies$ $c = 15$

Also, $\;$ $\sin C = \sqrt{1 - \cos^2 C}$

i.e. $\;$ $\sin C = \sqrt{1 - \left(- \dfrac{5}{13}\right)^2} = \sqrt{\dfrac{144}{169}} = \dfrac{12}{13}$

Now, circumradius $\;$ $R = \dfrac{c}{\sin C} = \dfrac{15}{2 \times \dfrac{12}{13}} = 8.125$

Semi-perimeter of $\triangle ABC$ $\;$ $= s = \dfrac{a + b + c}{2} = \dfrac{13 + 4 + 15}{2} = 16$

Area of $\triangle ABC$ $\;$ $= \Delta = \dfrac{1}{2}a b \sin C = \dfrac{1}{2} \times 13 \times 4 \times \dfrac{12}{13} = 24$

Now, inradius $\;$ $r = \dfrac{\Delta}{s} = \dfrac{24}{16} = 1.5$

Escribed radius $\;$ $r_1 = \dfrac{\Delta}{s - a} = \dfrac{24}{16 - 13} = 8$

Escribed radius $\;$ $r_2 = \dfrac{\Delta}{s - b} = \dfrac{24}{16 - 4} = 2$

Escribed radius $\;$ $r_3 = \dfrac{\Delta}{s - c} = \dfrac{24}{16 - 15} = 24$

Properties of Triangles

In a triangle whose sides are $18$, $24$ and $30 \; cm$ respectively, find the circumradius, the inradius and the radii of the three escribed circles.


Let $ABC$ be the given triangle with sides $\;$ $a = 18 \; cm$, $\;$ $b = 24 \; cm$, $\;$ $c = 30 \; cm$

Semi-perimeter of $\triangle ABC$ $= s = \dfrac{a + b + c}{2} = \dfrac{18 + 24 + 30}{2} = 36 \; cm$

Area of $\triangle ABC$ $= \sqrt{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}$

i.e. $\;$ $\Delta = \sqrt{36 \left(36 - 18\right) \left(36 - 24\right) \left(36 - 30\right)}$

i.e. $\;$ $\Delta = \sqrt{36 \times 18 \times 12 \times 6} = 216 \; cm^2$

Circumradius $R = \dfrac{abc}{4 \Delta} = \dfrac{18 \times 24 \times 30}{4 \times 216} = 15 \; cm$

Inradius $r = \dfrac{\Delta}{s} = \dfrac{216}{36} = 6 \; cm$

Escribed radius $r_1 = \dfrac{\Delta}{s - a} = \dfrac{216}{36 - 18} = 12 \; cm$

Escribed radius $r_2 = \dfrac{\Delta}{s - b} = \dfrac{216}{36 - 24} = 18 \; cm$

Escribed radius $r_3 = \dfrac{\Delta}{s - c} = \dfrac{216}{36 - 30} = 36 \; cm$

Properties of Triangles

The lengths of two sides of a triangle are $1$ and $\sqrt{2}$ units respectively and the angle opposite the shorter side is $30^\circ$. Prove that there are two triangles satisfying these conditions, find their angles and show that their areas are in the ratio $\sqrt{3} + 1 : \sqrt{3} - 1$


Let the sides of the triangle be $\;$ $a = 1$ unit, $\;$ $b = \sqrt{2}$ units

Angle opposite shorter side is $\;$ $A = 30^\circ$

Now, $\;$ $b \sin A = \sqrt{2} \times \sin \left(30^\circ\right) = \dfrac{\sqrt{2}}{2} = \dfrac{1}{\sqrt{2}} < a$

$\implies$ There are two values of $B$, $\;$ $0^\circ < B < 90^\circ$ (first quadrant) and $90^\circ < B < 180^\circ$ (second quadrant)

By sine rule in $\triangle ABC$, $\;$ $\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C}$

$\implies$ $\sin B = \dfrac{b \sin A}{a} = \dfrac{\sqrt{2} \times \sin \left(30^\circ\right)}{1} = \dfrac{\sqrt{2}}{2} = \dfrac{1}{\sqrt{2}}$

$\implies$ $B = \sin^{-1} \left(\dfrac{1}{\sqrt{2}}\right)$

i.e. $\;$ $B = 45^\circ$ $\;$ or $\;$ $B = 180^\circ - 45^\circ = 135^\circ$

Now, in $\triangle ABC$, $A + B + C = 180^\circ$ $\implies$ $C = 180^\circ - \left(A + B\right)$

When $\;$ $B = 45^\circ$, $\;$ $C = 180^\circ - \left(30^\circ + 45^\circ\right) = 105^\circ$

When $\;$ $B = 135^\circ$, $\;$ $C = 180^\circ - \left(30^\circ + 135^\circ\right) = 15^\circ$

When $\;$ $a = 1$, $\;$ $b = \sqrt{2}$, $\;$ $A = 30^\circ$, $\;$ $B_1 = 45^\circ$, $\;$ $C_1 = 105^\circ$

Area of $\triangle A B_1 C_1$ $= \Delta_1 = \dfrac{1}{2} a \; b \sin C_1$

i.e. $\;$ $\Delta_1 = \dfrac{1}{2} \times 1 \times \sqrt{2} \times \sin \left(105^\circ\right)$

i.e. $\;$ $\Delta_1 = \dfrac{\sqrt{2}}{2} \times \dfrac{\left(\sqrt{3} + 1\right)}{2 \sqrt{2}}$

i.e. $\;$ $\Delta_1 = \dfrac{\sqrt{3} + 1}{4}$

When $\;$ $a = 1$, $\;$ $b = \sqrt{2}$, $\;$ $A = 30^\circ$, $\;$ $B_2 = 135^\circ$, $\;$ $C_2 = 15^\circ$

Area of $\triangle A B_2 C_2$ $= \Delta_2 = \dfrac{1}{2} a \; b \sin C_2$

i.e. $\;$ $\Delta_2 = \dfrac{1}{2} \times 1 \times \sqrt{2} \times \sin \left(15^\circ\right)$

i.e. $\;$ $\Delta_2 = \dfrac{\sqrt{2}}{2} \times \dfrac{\left(\sqrt{3} - 1\right)}{2 \sqrt{2}}$

i.e. $\;$ $\Delta_2 = \dfrac{\sqrt{3} - 1}{4}$

$\therefore \;$ $\Delta_1 : \Delta_2 = \dfrac{\sqrt{3} + 1}{4} : \dfrac{\sqrt{3} - 1}{4}$

i.e. $\;$ $\Delta_1 : \Delta_2 = \sqrt{3} + 1 : \sqrt{3} - 1$

Properties of Triangles

The sides of a triangle are in A.P and its area is $\dfrac{3}{5}$ths of an equilateral triangle of the same perimeter. Prove that its sides are in the ratio $3 : 5 : 7$ and find the greatest angle of the triangle.


Let the sides of the triangle be $s_1$, $s_2$ and $s_3$.

Given: $\;$ $s_1$, $s_2$ and $s_3$ are in A.P

$\therefore \;$ Let $s_1 = a - x$, $s_2 = a$, $s_3 = a + x$

Semi-perimeter of the triangle $= s = \dfrac{a - x + a + a + x}{2} = \dfrac{3a}{2}$

Area of the triangle $= \Delta = \sqrt{s \left(s - s_1\right) \left(s - s_2\right) \left(s - s_3\right)}$

i.e. $\;$ $\Delta = \sqrt{\left(\dfrac{3a}{2}\right) \left(\dfrac{3a}{2} - a + x\right) \left(\dfrac{3a}{2} - a\right) \left(\dfrac{3a}{2} - a - x\right)}$

i.e. $\;$ $\Delta = \sqrt{\left(\dfrac{3a}{2}\right) \left(\dfrac{a + 2x}{2}\right) \left(\dfrac{a}{2}\right) \left(\dfrac{a - 2x}{2}\right)}$

i.e. $\;$ $\Delta = \dfrac{a}{4} \sqrt{3 \left(a^2 - 4 x^2\right)}$ $\;\;\; \cdots \; (1)$

Area of an equilateral triangle with perimeter same as that of triangle with sides $s_1$, $s_2$ and $s_3$ is

$\Delta_1 = \dfrac{a^2 \sqrt{3}}{4}$ $\;\;\; \cdots \; (2)$

Given: $\;$ $\Delta = \dfrac{3}{5} \Delta_1$

$\therefore \;$ In view of equations $(1)$ and $(2)$ we have,

$\dfrac{a}{4} \sqrt{3 \left(a^2 - 4 x^2\right)} = \dfrac{3}{5} \times \dfrac{a^2 \sqrt{3}}{4}$

i.e. $\;$ $\sqrt{a^2 - 4x^2} = \dfrac{3 a}{5}$

i.e. $\;$ $a^2 - 4 x^2 = \dfrac{9 a^2}{25}$

i.e. $\;$ $4 x^2 = a^2 - \dfrac{9a^2}{25} = \dfrac{16 a^2}{25}$

i.e. $\;$ $x^2 = \dfrac{4 a^2}{25}$

$\implies$ $x = \dfrac{2 a}{5}$ $\;\;\;$ [negative value for $x$ is rejected as sides of a triangle cannot be negative]

$\therefore \;$ The sides of the triangle are

$s_1 = a - \dfrac{2a}{5}$, $\;$ $s_2 = a$, $\;$ $s_3 = a + \dfrac{2a}{5}$

i.e. $\;$ $s_1 = \dfrac{3a}{5}$, $\;$ $s_2 = a$, $\;$ $s_3 = \dfrac{7a}{5}$

Now, ratio of sides of the triangle is

$s_1 : s_2 : s_3 = \dfrac{3a}{5} : a : \dfrac{7a}{5}$

i.e. $\;$ $s_1 : s_2 : s_3 = 3 : 5 : 7$

Greatest side of the triangle is $s_3 = \dfrac{7a}{5}$

$\therefore \;$ angle opposite to $s_3$ i.e. $S_3$ is the greatest angle.

By cosine rule,

$\begin{aligned} \cos \left(S_3\right) & = \dfrac{s_1^2 + s_2^2 - s_3^2}{2 s_1 s_2} \\\\ & = \dfrac{\dfrac{9a^2}{25} + a^2 - \dfrac{49 a^2}{25}}{2 \times \dfrac{3a}{5} \times a} \\\\ & = \dfrac{- 15 / 25}{6 / 5} \\\\ & = - \dfrac{1}{2} \end{aligned}$

$\implies$ $S_3 = \cos^{-1} \left(- \dfrac{1}{2}\right) = 120^\circ$