Properties of Triangles

In $\triangle ABC$, if $a = 125, \; b = 123, \; c = 62$, find the sines of half the angles and the sines of the angles.


In any $\triangle ABC$,

$\sin \left(\dfrac{A}{2}\right) = \sqrt{\dfrac{\left(s - b\right) \left(s - c\right)}{b c}}$, $\;$ $\sin \left(\dfrac{B}{2}\right) = \sqrt{\dfrac{\left(s - c\right) \left(s - a\right)}{c a}}$, $\;$ $\sin \left(\dfrac{C}{2}\right) = \sqrt{\dfrac{\left(s - a\right) \left(s - b\right)}{a b}}$

$\sin A = \dfrac{2}{bc} \sqrt{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}$, $\;$ $\sin B = \dfrac{2}{ca} \sqrt{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}$, $\;$ $\sin C = \dfrac{2}{ab} \sqrt{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}$

$s = \dfrac{a + b + c}{2} = $ semi perimeter of $\triangle ABC$

Given: $\;$ $a = 125, \; b = 123, \; c = 62$

$s = \dfrac{125 + 123 + 62}{2} = 155$

$\begin{aligned} \sin \left(\dfrac{A}{2}\right) & = \sqrt{\dfrac{\left(155 - 123\right) \left(155 - 62\right)}{123 \times 62}} \\\\ & = \sqrt{\dfrac{32 \times 93}{123 \times 62}} = \sqrt{\dfrac{16}{41}} = \dfrac{4}{\sqrt{41}} \end{aligned}$

$\begin{aligned} \sin \left(\dfrac{B}{2}\right) & = \sqrt{\dfrac{\left(155 - 62\right) \left(155 - 125\right)}{62 \times 125}} \\\\ & = \sqrt{\dfrac{93 \times 30}{62 \times 125}} = \sqrt{\dfrac{9}{25}} = \dfrac{3}{5} \end{aligned}$

$\begin{aligned} \sin \left(\dfrac{C}{2}\right) & = \sqrt{\dfrac{\left(155 - 125\right) \left(155 - 123\right)}{125 \times 123}} \\\\ & = \sqrt{\dfrac{30 \times 32}{125 \times 123}} = \sqrt{\dfrac{64}{25 \times 41}} = \dfrac{8}{5 \sqrt{41}} \end{aligned}$

$\begin{aligned} \sin A & = \dfrac{2}{123 \times 62} \sqrt{155 \left(155 - 125\right) \left(155 - 123\right) \left(155 - 62\right)} \\\\ & = \dfrac{1}{123 \times 31} \sqrt{155 \times 30 \times 32 \times 93} \\\\ & = \dfrac{1}{123 \times 31} \times 4 \times 5 \times 6 \times 31 = \dfrac{40}{41} \end{aligned}$

$\begin{aligned} \sin B & = \dfrac{2}{62 \times 125} \sqrt{155 \left(155 - 125\right) \left(155 - 123\right) \left(155 - 62\right)} \\\\ & = \dfrac{1}{31 \times 125} \sqrt{155 \times 30 \times 32 \times 93} \\\\ & = \dfrac{1}{31 \times 125} \times 4 \times 5 \times 6 \times 31 = \dfrac{24}{25} \end{aligned}$

$\begin{aligned} \sin C & = \dfrac{2}{125 \times 123} \sqrt{155 \left(155 - 125\right) \left(155 - 123\right) \left(155 - 62\right)} \\\\ & = \dfrac{2}{125 \times 123} \sqrt{155 \times 30 \times 32 \times 93} \\\\ & = \dfrac{2}{125 \times 123} \times 4 \times 5 \times 6 \times 31 = \dfrac{496}{1025} \end{aligned}$