Properties of Triangles

If $\; A, \; B, \; C \;$ in $\;$ $\triangle ABC$ $\;$ are in A.P. and the sides $\; a, \; b, \; c \;$ are in G.P., then show that $\; a^2, \; b^2, \; c^2 \;$ are in A.P.


$\because \;$ $A, \; B, \; C \;$ are in A.P. $\implies$ $2 B = A + C$ $\;\;\; \cdots \; (1)$

$\because \;$ $a, \; b, \; c \;$ are in G.P. $\implies$ $b^2 = a c$ $\;\;\; \cdots \; (2)$

In $\triangle ABC$, $\;$ $A + B + C = \pi$

i.e. $\;$ $A + C = \pi - B$ $\;\;\; \cdots \; (3)$

In view of equation $(1)$, equation $(3)$ becomes,

$2 B = \pi - B$ $\implies$ $3 B = \pi$ $\implies$ $B = \dfrac{\pi}{3}$ $\; \; \; \cdots \; (4)$

By cosine rule, $\;$ $\cos B = \dfrac{c^2 + a^2 - b^2}{2 c a}$

i.e. $\;$ $b^2 = c^2 + a^2 - 2 c a \cos B$

i.e. $\;$ $b^2 = c^2 + a^2 - 2 b^2 \cos \left(\dfrac{\pi}{3}\right)$ $\;\;\;$ [by equations $(2)$ and $(4)$]

i.e. $\;$ $b^2 = c^2 + a^2 - 2 b^2 \times \dfrac{1}{2}$

i.e. $\;$ $b^2 = c^2 + a^2 - b^2$

i.e. $\;$ $2 b^2 = a^2 + c^2$

$\implies$ $a^2, \; b^2, \; c^2 \;$ are in A.P.