Properties of Triangles

The base angles of a triangle are $22.5^\circ$ and $112.5^\circ$. Prove that the base is equal to twice the height of the triangle.


Let the base angles be $B = 22.5^\circ$ and $C = 112.5^\circ$

Draw $AD \perp BC$ extended.

In $\triangle ABC$, $\;$ $A + B + C = 180^\circ$

$\therefore \;$ $A = 180^\circ - \left(B + C\right) = 180^\circ - \left(22.5^\circ + 112.5^\circ\right) = 45^\circ$

In $\triangle ABC$, by sine rule,

$\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = k$ (say), where $k$ is the constant of proportionality.

$\implies$ $b = \dfrac{a \sin B}{\sin A} = \dfrac{a \sin \left(22.5^\circ\right)}{\sin \left(45^\circ\right)}$ $\;\;\; \cdots \; (1)$

Now, in right $\triangle ACD$,

$\begin{aligned} AD & = AC \; \sin \left(\angle ACD\right) \\\\ & = b \; \sin \left(180^\circ - \angle ACB\right) \\\\ & = b \; \sin \left(\angle ACB\right) \\\\ & = b \; \sin \left(112.5^\circ\right) \\\\ & = \dfrac{a \times \sin \left(22.5^\circ\right) \times \sin \left(112.5^\circ\right)}{\sin \left(45^\circ\right)} \;\; \left[\text{by equation (1)}\right] \\\\ & = \dfrac{a \times \left(\dfrac{\sqrt{2 - \sqrt{2}}}{2}\right) \times \left(\dfrac{\sqrt{2 + \sqrt{2}}}{2}\right)}{\dfrac{1}{\sqrt{2}}} \\\\ & = \dfrac{\sqrt{2} \times a \times \sqrt{2}}{4} \\\\ & = \dfrac{a}{2} \end{aligned}$

$\implies$ $a = 2 \; AD$

i.e. $\;$ The base of $\triangle ABC$ is equal to twice its height.

Hence proved.