Properties of Triangles

If $\cos A = \dfrac{17}{22}$ and $\cos C = \dfrac{1}{14}$, find the ratio of $a : b : c$.


Given: $\;$ $\cos A = \dfrac{17}{22}$, $\;$ $\cos C = \dfrac{1}{14}$

Now, $\;$ $\sin A = \sqrt{1 - \cos^2 A} = \sqrt{1 - \left(\dfrac{17}{22}\right)^2} = \dfrac{\sqrt{195}}{22}$ $\;\;\; \cdots \; (1a)$

and $\;$ $\sin C = \sqrt{1 - \cos^2 C} = \sqrt{1 - \left(\dfrac{1}{14}\right)^2} = \dfrac{\sqrt{195}}{14}$ $\;\;\; \cdots \; (1b)$

In $\triangle ABC$, $\;$ $A + B + C = \pi$

i.e. $\;$ $B = \pi - \left(A + C\right)$

$\begin{aligned} \therefore \; \sin B & = \sin \left[\pi - \left(A + C\right)\right] \\\\ & = \sin \left(A + C\right) \\\\ & = \sin A \cos C + \cos A \sin C \\\\ & = \dfrac{\sqrt{195}}{22} \times \dfrac{1}{14} + \dfrac{17}{22} \times \dfrac{\sqrt{195}}{14} \\\\ & = \dfrac{9 \sqrt{195}}{154} \;\;\; \cdots \; (1c) \end{aligned}$

By sine rule, $\;$ $\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C}$

$\begin{aligned} \implies a : b : c & = \sin A : \sin B : \sin C \\\\ & = \dfrac{\sqrt{195}}{22} : \dfrac{9 \sqrt{195}}{154} : \dfrac{\sqrt{195}}{14} \;\; \left[\text{by equations (1a), (1b), (1c)}\right] \\\\ & = \dfrac{1}{22} : \dfrac{9}{154} : \dfrac{1}{14} \\\\ & = \dfrac{7}{154} : \dfrac{9}{154} : \dfrac{11}{154} \end{aligned}$

$\therefore \;$ $a : b : c = 7 : 9 : 11$